Stochastic Nonlinear Perron-Frobenius Theorem and von Neumann-Gale Dynamical Systems

Igor Evstigneev
University of Manchester
Von Neumann-Gale dynamical systems are defined in terms of multivalued operators possessing properties of convexity and homogeneity. These operators assign to each element of a given cone a convex subset of the cone describing possible one-step transitions from one state of the system to another. Key results on von Neumann-Gale dynamical systems may be regarded as multivalued nonlinear versions of the Perron-Frobenius theorem.

The classical, deterministic theory of such dynamics was originally aimed at the modeling of economic growth (von Neumann 1937 and Gale 1956). First attempts to build a stochastic generalization of this theory were undertaken in the 1970s by Dynkin, Radner and their research groups. However, the initial attack on the problem left many questions unanswered. Substantial progress was made only in the late 1990s, and final solutions to the main open problems were obtained only in the last 5-6 years. The talk will review this theory and outline its recently discovered applications in finance.
Multivalued dynamical systems

Given:
Set X_t (state space at time t), $t = 0, 1, 2, \ldots$;
multivalued mapping

$$x \mapsto A_t(x), \quad x \in X_{t-1}, \quad A_t(x) \subseteq X_t$$

(transition mapping).

Paths, or trajectories: sequences x_0, x_1, \ldots such that

$$x_t \in A_t(x_{t-1}).$$
Von Neumann-Gale dynamical systems

X_t are **cones** in linear spaces;
for each t, the graph of the transition mapping $A_t(\cdot)$,
\[
Z_t = \{(x,y) \in X_{t-1} \times X_t : y \in A_t(x)\},
\]
is a **cone**.
Equivalent description in terms of transition cones:
Given: *transition cones* Z_t; *paths* are sequences x_0, x_1, \ldots such that
\[
(x_{t-1}, x_t) \in Z_t.
\]

Autonomous systems

X_t and $A_t(\cdot)$ (or Z_t) do not depend on t.

Example: von Neumann (1937) model of economic growth

\[X_t = R^n, \]

\[Z_t \subseteq R^n_+ \times R^n_+ \text{ polyhedral cones.} \]

States \(x = (x^1, \ldots, x^n) \geq 0 \) are \textit{commodity vectors}. The process of economic growth: dynamics of \(x_t \) in time. Feasible growth paths \(x_0, x_1, \ldots \):

\[(x_{t-1}, x_t) \in Z_t. \]

Elements \((x, y) \in Z_t \) are feasible \textit{input-output pairs}, or \textit{technological processes} (for the time period \(t-1, t \)). \(Z_t \) are termed \textit{technology sets}.

The cone Z_t is polyhedral: there is a finite set of basic technological processes

$$(x^1_{t-1}, y^1_t), \ldots, (x^m_{t-1}, y^m_t)$$

and

$$(x, y) \in Z_t \iff (x, y) = \sum_{j=1}^{m} d^j (x^j_{t-1}, y^j_t),$$

where

$$d^1 \geq 0, \ldots, d^m \geq 0$$

are intensities of operating the technological processes

$$(x^1_{t-1}, y^1_t), \ldots, (x^m_{t-1}, y^m_t).$$

Gale (1956): general, not polyhedral, cones.
The main notions related to v. N.-G. systems: deterministic case

Assume the system is autonomous: $Z_t = Z \subseteq R^n_+ \times R^n_+$.

Path: sequence (x_t) such that $(x_{t-1}, x_t) \in Z$.

Dual path: sequence (p_t) such that

$$p_t y \leq p_{t-1} x \text{ for all } (x, y) \in Z.$$

This implies: if (p_t) is a dual path, then for any path (x_t):

$$p_0 x_0 \geq p_1 x_1 \geq p_2 x_2 \geq \ldots$$

A dual path (p_t) supports a path (x_t) if

$$p_t x_t = 1.$$
Balanced path: $x_t = \lambda^t x$.

Von Neumann path: that balanced path for which λ is the greatest.

Balanced dual path: $p_t = \mu^{-t} p$, $\mu > 0$.

Von Neumann equilibrium: triplet (λ, x, p) such that $\lambda^t x$ is a balanced path and $\lambda^{-t} p$ is a dual path supporting it.

Under general assumptions, (λ, x, p) is an equilibrium if and only if

$$
(x, \lambda x) \in Z,
$$

$$
\frac{py}{\lambda} \leq px \text{ for all } (x, y) \in Z,
$$

$$
px = 1.
$$

Economic meaning: λ growth factor of the economy; $1/\lambda$ discount factor; p equilibrium prices.

Von Neumann (1937): existence of equilibrium for a polyhedral Z.
Relation to the Perron-Frobenius theorem

Let

\[Z = \{(x,y) : y = Ax\}, \]

where \(A \) is a non-negative matrix; \(A^m > 0 \) for some \(m \). Then \((\lambda, x, p)\) is a von Neumann equilibrium if and only if

\[\lambda x = Ax, \quad \lambda^{-1}p = pA, \quad xp = 1.\]

i.e., \(\lambda \) and \(x \) are the P-F eigenvalue and eigenvector of \(A \) and \(\lambda^{-1} \) and \(p \) are the P-F eigenvalue and eigenvector of the conjugate of \(A \).

Stochastic von Neumann–Gale dynamical systems

Pioneering work of Eugene Dynkin, Roy Radner and their research groups in the 1970s.

Given:

- Probability space (Ω, \mathbf{F}, P);
- filtration $\mathbf{F}_0 \subseteq \mathbf{F}_1 \subseteq \ldots \subseteq \mathbf{F}_t \subseteq \ldots \subseteq \mathbf{F}$;
- set-valued transition mappings $A_t(\omega, a) \subseteq \mathbb{R}_+^n$ assigning to each $\omega \in \Omega$ and $a \in \mathbb{R}_+^n$ a set $A_t(\omega, a) \subseteq \mathbb{R}_+^n$ such that
 (i) for each ω, the graph
 $$Z_t(\omega) := \{(a, b) : b \in A_t(\omega, a)\}$$
 of the mapping $A_t(\omega, \cdot)$ is a closed convex cone (transition cone);
 (ii) the set-valued mapping $Z_t(\omega)$ is \mathbf{F}_t-measurable.
Paths (trajectories) $x_0(\omega), x_1(\omega), \ldots$

$$x_t(\omega) \in A_t(\omega, x_{t-1} (\omega)) \text{ (a.s.)},$$

or, equivalently,

$$(x_{t-1}(\omega), x_t(\omega)) \in Z_t(\omega) \text{ (a.s.)}$$

and

$$x_t \text{ is } F_t\text{-measurable.}$$

Let X_t denote the space of F_t-measurable random vectors and put

$$Z_t := \{(x, y) \in X_{t-1} \times X_t : (x(\omega), y(\omega)) \in Z_t(\omega) \text{ a.s.}\}.$$

Thus, a path is a sequence x_0, x_1, x_2, \ldots such that

$$(x_{t-1}, x_t) \in Z_t.$$
Applications of von Neumann-Gale systems in finance: a dynamic securities market model

n assets;

a (contingent) portfolio of assets

\[x_t(\omega) = (x_1^t(\omega), \ldots, x_n^t(\omega)), \quad x_t \in X_t. \]

trading strategy: a sequence of portfolios

\[x_0, x_1, x_2, \ldots; \]

self-financing trading strategy:

\[(x_{t-1}, x_t) \in Z_t, \]

where

\[Z_t := \{(x, y) \in X_{t-1} \times X_t : (x(\omega), y(\omega)) \in Z_t(\omega) \text{ a.s.}\}. \]

\(Z_t(\omega) \) cone (transition cone) depending \(F_t \)-measurably on \(\omega \).

\((x_{t-1}, x_t) \in Z_t \iff \) portfolio \(x_{t-1} \) can be transformed to \(x_t \) under the self-financing constraint (with transaction costs).

Self-financing trading strategies: paths in this system.
An example of the transition cone $Z_t(\omega)$ in a financial market model with transaction costs

There are n assets. Given:

$$S_t^i(\omega) < \bar{S}_t^i(\omega), \quad i = 1, \ldots, n,$$

the asset i's bid and ask prices, respectively. (You get $S_t^i(\omega)$ when you sell and pay $\bar{S}_t^i(\omega)$ when you buy.)

The cone $Z_t(\omega)$ consists of (a, b) satisfying

$$\sum_{i=1}^n \bar{S}_t^i(b^i - a^i)_+ \leq \sum_{i=1}^n S_t^i(a^i - b^i)_+, \quad \text{where } r_+ := \max\{r, 0\}.$$

According to the definition of $Z_t(\omega)$, asset purchases are made only at the expense of sales of available assets (under transaction costs).
Financial applications of the von Neumann-Gale theory:

Dual paths

Sequences \(p_0, p_1, \ldots \) \((p_t \geq 0, p_t \text{ is } F_t\text{-measurable})\) satisfying

\[
E p_t y \leq E p_{t-1} x, \quad (x,y) \in Z_t,
\]

are called dual paths.

Note that if \((p_t)\) is a dual path, then for any path \((y_t)\)

\[
E p_0 y_0 \geq E p_1 y_1 \geq \ldots \geq E p_t y_t \geq \ldots
\]

In financial models, dual paths represent market-consistent price systems. In the models of frictionless markets, they can be expressed through densities of equivalent martingale measures.

If \((x_t)\) is a path, \((p_t)\) is a dual path and

\[
p_t x_t = 1 \text{ (a.s.)}
\]

then \((p_t)\) is said to support \((x_t)\).

Assumption (duality \(L_\infty, L_1 \)): all primal variables \(x_t \) are essentially bounded; all dual variables \(p_t \) are integrable.
The primary focus is on the analysis of *rapid paths*.

Rapid paths

A path \((x_t)\) is called **rapid** if there exists a dual path \((p_t)\) that supports \((x_t)\) (i.e. \(p_tx_t = 1\) a.s.).

Thus **rapid paths** are those which are supported by dual paths.

Why "rapid"?
Rapid paths

The term "rapid" is motivated by the fact that rapid paths grow faster than others.

Proposition. Let \((x_t) \) be a path. Let \(p_0, p_1, \ldots [p_t \in X_t] \) be a sequence of random vectors such that

\[
p_t x_t = 1 \text{ a.s.}
\]

Then the following conditions are equivalent:

(i) \((p_t)\) is a dual path, and so \((x_t) \) is a rapid path;

(ii) \((x_{t-1}, x_t)\) maximizes the expected growth rate:

\[
E \frac{p_t y}{p_{t-1} x} \leq E \frac{p_t x_t}{p_{t-1} x_{t-1}} \quad (= 1), \; (x, y) \in Z_t;
\]

(iii) \((x_{t-1}, x_t)\) maximizes the expected logarithm of the growth rate:

\[
E \ln \frac{p_t y}{p_{t-1} x} \leq E \ln \frac{p_t x_t}{p_{t-1} x_{t-1}} = 0, \; (x, y) \in Z_t;
\]

(iv) \((x_{t-1}, x_t)\) maximizes the ratio \(E p_t y / E p_{t-1} x \) :

\[
\frac{E p_t y}{E p_{t-1} x} \leq \frac{E p_t x_t}{E p_{t-1} x_{t-1}} = 1, \; (x, y) \in Z_t.
\]
Asymptotic growth-optimality of rapid paths

The most important property of infinite rapid paths (which does not depend on \((p_t)\)) is their \textbf{asymptotic growth-optimality}.

For a vector \(b = (b^1, \ldots, b^n)\), put \(|b| = |b^1| + \ldots + |b^n|\).

Under a general assumption on the cones \(Z_t(\omega)\) (see (A3) below), any rapid path is \textbf{(asymptotically) growth-optimal}: for any other path \(y_0, y_1, \ldots\), we have

\[
\sup \frac{|y_t|}{|x_t|} < \infty \text{ a.s.}
\]

Remark. The above property remains valid if \(|\cdot|\) is replaced by any (possibly random) function \(\psi_t(\cdot)\), where \(c|a| \leq \psi_t(a) \leq C|a|\), where \(0 < c < C\) are some random variables.

For example, \(\psi_t(a)\) can be the value

\[
\psi_t(a) = S_t a
\]

of the portfolio \(a\) in some price system \(S_t\) \((0 < c < S_t^i < C)\).

In the financial interpretation, asymptotic optimality means that no investment strategy \(y_0, y_1, \ldots\) \textit{can yield asymptotically faster growth of wealth than} \(x_0, x_1, \ldots\)
Existence of rapid paths

Assumptions on the transition cones $Z_t(\omega)$:

(A1) There exists a constant M such that $|b| \leq M|a|$ for all $(a, b) \in Z_t(\omega)$.

(A2) There exists a constant $\gamma > 0$ such that $(e, \gamma e) \in Z_t(\omega)$, where $e = (1, 1, \ldots, 1)$.

(A3) There exists an integer $l \geq 1$ such that for every $t \geq 0$ and $i = 1, \ldots, n$ there is a path $y_{t,i}, \ldots, y_{t+l,i}$ satisfying

$$y_{t,i} = e_i, \ldots, y_{t+l,i} \geq \kappa e, \kappa > 0,$$

where $e_i = (0, 0, \ldots, 1, \ldots, 0)$ (ith coordinate is 1).

Theorem. (A1-A2) For each $x_0(\omega) \geq \alpha e$ ($\alpha > 0$) and each N there exists a finite rapid path of length N with initial state x_0.

(A1-A3) For each $x_0(\omega) \geq \alpha e$ ($\alpha > 0$) there exists an infinite rapid path with initial state x_0.
Finite rapid paths are solutions to optimization problems of the form

\[E \ln \psi(x_N) \to \max \]

(\(\psi \) concave, monotone, homogeneous).

Autonomous systems

Autonomous random dynamical systems serve as a framework for *stationary stochastic models*.

In an autonomous von Neumann-Gale system, we are given additionally an automorphism of the probability space \((\Omega, \mathcal{F}, P)\) (time shift) — a *measure preserving* one-to-one transformation \(T : \Omega \to \Omega\) such that

(a) the filtration \(\ldots \subseteq \mathcal{F}_{-1} \subseteq \mathcal{F}_0 \subseteq \mathcal{F}_1 \subseteq \ldots \subseteq \mathcal{F}_t \subseteq \ldots\) (defined here for all \(t = 0, \pm 1, \ldots\)) is invariant

\[
T^{-1}\mathcal{F}_t = \mathcal{F}_{t+1},
\]

(b) for each \(t\), we have \(Z_t(T\omega) = Z_{t+1}(\omega)\).

Condition (b) means that the cone-valued process \(Z_t(\omega)\) is *stationary* (stationarity is understood in terms of *ergodic theory* of dynamical systems).

Definition. A stochastic process (point- or set-valued) \(\xi_0(\omega), \xi_1(\omega), \ldots\) is called *stationary* if \(\xi_{t+1}(\omega) = \xi_t(T\omega)\) (equivalently, \(\xi_t(\omega) = \xi_0(T^t\omega)\)).
Balanced paths

In autonomous systems, a central role is played by **balanced paths**, i.e. paths of the form

\[x_t := \lambda(T\omega)\lambda(T^2\omega)\ldots\lambda(T^t\omega)x(T^t\omega), \]

where

\[\lambda(\omega) > 0 \]

is an \(F_0 \)-measurable scalar function and

\[x(\omega) \geq 0 \]

is an \(F_0 \)-measurable vector function satisfying

\[|x(\omega)| = 1. \]

A balanced path **grows with stationary proportions** \(x(T^t\omega) \) and **at a stationary rate** \(\lambda(T^t\omega) \).

In the deterministic case:

\[x_t = \lambda^t x. \]
Von Neumann path

A balanced path maximizing

\[E \log \lambda(\omega) \]

among all balanced paths is called a **von Neumann path**.
The main results for autonomous systems (stationary models)

Assume (A1) - (A3).

Theorem. A von Neumann path exists and is rapid.

A triplet of functions

$$\lambda(\cdot), x(\cdot), p(\cdot)$$

is called a von Neumann equilibrium if

$$x_t := \lambda(T\omega)\lambda(T^2\omega)\ldots\lambda(T^t\omega)x(T^t\omega),$$

is a von Neumann path and

$$p_t := \frac{p(T^t\omega)}{\lambda(T\omega)\lambda(T^2\omega)\ldots\lambda(T^t\omega)}$$

is a dual path supporting it.

Theorem. A von Neumann equilibrium exists.
Dynkin’s problem. The above results give the positive answer to the existence problem for a stochastic von Neumann equilibrium posed by Eugene Dynkin in the early 1970s. In the deterministic case: von Neumann (1937), Gale (1956).

The existence theorem for a von Neumann equilibrium was obtained in the paper:

The paper relied substantially on the previous work:
Existence of a v.N. equilibrium: the strategy of the proof

The proof is based on the idea of "elimination of randomization" (Dvoretzky, Wald and Wolfowitz, 1950).

First an appropriate extension of the original dynamical system is constructed, using an "additional source of randomness".

Then, based on some subtle properties of convexity, the randomization is eliminated and the existence of a von Neumann equilibrium in the original system is established.
Stationary model.
Fix some time period \((t-1, t)\), say \((0, 1)\) (by stationarity, it does not matter which one).
Put
\[
\gamma(\omega, a, b) := \max \{ r \geq 0 : (a, rb) \in Z_1(\omega) \}
\]
for \(a, b\) in the unit simplex
\[
\Delta := \{ a \geq 0 : |a| = 1 \}
\]
(characteristic function of the cone \(Z_1(\omega)\)).

Proposition. A von Neumann path exists if and only if the variational problem
\[
E \ln \gamma(\omega, y(\omega), y(T\omega)) \to \max,
\]
\[
y(\omega) \in \Delta,
\]
\[
y(\omega) \text{ is } F_0\text{-measurable},
\]
has a solution.
Randomized stationary mass transfer problem.

\[E \int_{\Delta \times \Delta} \ln \gamma(\omega, a, b) \mu(\omega, da, db) \rightarrow \max, \]

\(\mu(\omega, \cdot, \cdot) \) is a random measure on \(\Delta \times \Delta \),

\(\mu(\omega, \cdot, \Delta) \) is \(F_0 \)-measurable,

\(\mu(\omega, \Delta, C) = \mu(T\omega, C, \Delta) \ \forall \ C \subseteq \Delta. \)

Proving that an optimal \(\mu \) exists (easy).

Elimination of randomization: proving that there is an optimal \(\mu \) the form

\[\mu(\omega, da, db) = \delta_{y(\omega)}(da) \otimes \delta_{y(T\omega)}(db) \]

for some \(F_0 \)-measurable \(y(\omega) \).

Ergodic theory + convex analysis in spaces of measurable functions.
Deterministic counterpart: the Romanovskii (1967) version of the mass transfer problem.

\[\int_{\Delta \times \Delta} K(a, b) \mu(da, db) \to \max \]

\[\mu(\Delta \times \Delta) = 1; \]

\[\mu(\Delta, A) = \mu(A, \Delta) \text{ for all } A \subseteq \Delta. \]

Key question: does there exist a solution of the form

\[\mu(da, db) = \delta_y(da) \otimes \delta_y(db) \]

(for some \(y \))? If yes, then clearly, \(y \) maximizes \(K(x, x) \).

Characteristic function of a cone. Let \(Z \) be the v.N.-G. cone. Put \[\gamma(a, b) := \max\{r \geq 0 : (a, rb) \in Z\}. \]

Define

\[K(a, b) = \ln \gamma(a, b). \]

The existence of a v. N. path \(\Leftrightarrow \) positive answer to the above question.
An important special case: Stochastic Perron-Frobenius theory
Given: probability space (Ω, F, P),
filtration $\ldots \subseteq F_0 \subseteq F_1 \subseteq \ldots \subseteq F_t \subseteq \ldots F$
automorphism $T : \Omega \to \Omega$:

$$TP = T^{-1}P = P, \quad F_{t+1} = T^{-1}F_t,$$

random matrix $0 \leq A(\omega) : \mathbb{R}^n \to \mathbb{R}^n$, F_1-measurable.
Von Neumann-Gale cones of the form:

$$Z_t(\omega) = \{(a, b) : b = A(T^{t-1}\omega)a\}.$$
Random Perron-Frobenius eigenvalue and eigenvector

Suppose $A(\omega)A(T\omega)\ldots A(T^l\omega) > 0$ for some $l = l(\omega)$.

Theorem. There is a random scalar $\lambda(\omega) > 0$ (F_1-measurable) and a random vector $x(\omega) > 0$ (F_0-measurable) such that

$$
\lambda(\omega)x(T\omega) = A(\omega)x(\omega), \ |x(\omega)| = 1.
$$

The pair $(\lambda, x) \geq 0$ satisfying the above two equations is unique.

Von Neumann equilibrium in this system: (x, λ, p),

λ and x are the random P.-F. eigenvalue and eigenvector for $A(\cdot)$ and T, and p can be expressed through the random P.-F. eigenvector of $A^*(\cdot)$ and T^{-1}.
Nonlinear generalization

Analogous results hold a class of nonlinear random mappings

\[A(\omega, x) : \Omega \times \mathbb{R}^n_+ \to \mathbb{R}^n_+ . \]

The main assumptions: homogeneity and monotonicity of the mappings.

For two vectors \(x = (x^1, \ldots, x^n) \) and \(y = (y^1, \ldots, y^n) \), we write \(x < y \) if \(x \leq y \) and \(x \neq y \).

A mapping \(A : \mathbb{R}^n_+ \to \mathbb{R}^n_+ \) is called monotone if \(A(x) \leq A(y) \) for any vectors \(x, y \in \mathbb{R}^n_+ \) satisfying \(x \leq y \).

It is called completely monotone if it preserves each of the relations \(x \leq y, x < y \) and \(x < y \) between two vectors \(x, y \in \mathbb{R}^n_+ \) (clearly, if \(A \) preserves the second relation, it preserves the first).

A mapping \(A \) is termed strictly monotone if the relation \(x < y \) implies \(A(x) < A(y) \).

Let \(A(x) \) be linear, i.e., defined by a non-negative matrix \(A \). Then:

- \(A \) preserves the relation \(> \) if and only if \(A \) does not have zero columns;
- \(A \) preserves the relation \(> \) if and only if \(A \) does not have zero rows;
- \(A \) is completely monotone if and only if \(A \) has no zero rows and columns;
- \(A \) is strictly monotone if and only if \(A > 0 \).
Consider the (nonlinear) cocycle
\[C(t, \omega) = A(T^{t-1}\omega)A(T^{t-2}\omega)\ldots A(\omega), \quad t = 1, 2, \ldots, \]
[We write for convenience \(A(\omega)x = A(\omega, x) \), and the product means the composition of maps.]

Assumptions:
The mapping \(A(\omega, x) \) is measurable in \(\omega \) for each \(x \) and it is *completely monotone, homogeneous* and *continuous* in \(x \) for each \(\omega \). For almost all \(\omega \in \Omega \), there is a natural number \(l \) (depending on \(\omega \)) such that the mapping \(C(l, \omega) \) is *strictly monotone*.

Theorem. There exists a measurable vector function \(x(\omega) > 0 \) and a measurable scalar function \(\alpha(\omega) > 0 \) such that
\[\alpha(\omega)x(T\omega) = A(\omega)x(\omega), \quad |x(\omega)| = 1 \quad (\text{a.s.}). \]

This pair of functions \((\alpha(\cdot), x(\cdot)) \geq 0\) is unique up to the a.s. equivalence with respect to \(P \).
Hilbert-Birkhoff metric

Y the (relative) interior of the unit simplex:

$$ Y := \{y > 0 : |y| = 1 \}. $$

For $x, y \in Y$

$$ \rho(x, y) = \ln[\max_i \frac{x_i}{y_i} \cdot \max_j \frac{y_j}{x_j}]. $$

This is a complete metric on Y (the Hilbert-Birkhoff metric).

A key role in the proofs is played by the following fact. Let A be a mapping $\mathbb{R}^n_+ \to \mathbb{R}^n_+$ such that $A(x) \neq 0$ for $x \in Y$. Define

$$ f(x) = \frac{A(x)}{|A(x)|}, \ x \in Y. $$

(Recall that $Y := \{y > 0 : |y| = 1 \}$.)

Theorem. If $A(x)$ is homogeneous and strictly monotone, then $f(x)$ is contracting on Y in the H-B metric ρ, i.e.

$$ \rho(f(x), f(y)) < \rho(x, y) $$

for $x, y \in Y$ with $x \neq y$.
References

Linear case:

Large literature in the 1980s and 1990s (for infinite-dimensional operators).

Survey:

Nonlinear case:
