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Introduction

1. This paper introduces the reader to a new section of the theory of
Markov fields in which we investigate problems concerned with the notion
of the strong Markov property of a random field. This property of a field is
formulated in a similar way to the Markov property, but in terms of random
rather then deterministic subsets of Euclidean space. It is investigated by
means of probabilistic methods and the methods of extremal problems.

In the paper we prove a theorem on the characterization of random
domains with respect to which a given field has the strong Markov property.
We describe ways of constructing such random domains based on solutions
of extremal problems. In the framework of some general models we
consider transformations of the type of a "random change of time" which
preserve the Markov property. We discuss various examples and applications.

We note that the idea of the strong Markov property is well known for
stochastic processes (see [1], [2]). Here it is extended to random fields.

2. Various questions concerning Markov fields have attracted attention for
over twenty years (see, for example, [3] -[8]). An important stimulus to
the development of this subject was the discovery of its connections with
fundamental mathematical problems of quantum theory (see [4], [5]).
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At the present moment one apparently cannot distinguish one "standard"
definition of Markov fields: for different purposes different versions of this
notion are considered. We follow, in general, the approach developed in [3]
(although we use slightly different terms). We now formulate the definition
of Markov field adopted here, omitting some details; for a completely
accurate presentation see §6.3.

We denote by T(Rd) the class of all compact subsets t of Euclidean space
Rd that coincide with the closures of their interiors: t — cl int t. We
briefly call these sets domains (see [3]). Let a random field, that is, an
ordinary or generalized random function, be given on Rd. We say that the
given field has the Markov property with respect to some domain t C Rd if
for any a Q t C b, a, b € T(Rd), the realization of the field on b and its
realization on "a (if = cl ac— the closure of the complement of a) are
conditionally independent given its realization o n a n f t , We call a field
Markov if this condition is satisfied for all t £ T{Rd).

We note that the concept of the realization of a field on some closed set
υ ζ Rd includes the values of the field on the set υ and on the infinitesimal
neighbourhood of ν (we have in mind the intersection of the corresponding
σ-algebras over all ε-neighbourhoods of v, see §6.1).

In this connection, we also remark that in the particular case a = t = b
the above definition leads to a version of the Markov property described in
terms of the infinitesimal neighbourhood of the boundary bt = t Π t = b Π a—
compare [4] - [ 7 ] .

3. The idea of studying the strong Markov property of random fields arose
in the mid-seventies. However, some analogues of this property were used
earlier in implicit form in discrete models of statistical physics for the
investigation of phase transitions (see, for example, [9] and the references
therein). As an independent notion it was introduced in [10], [11] for the
study of random fields on a Euclidean space.

The idea of the main definition is as follows. We say that a random field
on Rd has the strong Markov property with respect to a random domain*1 *
τ C Rd if for any random domains a QT Q β the realization of the field on
β and its realization on a (= cl a c ) are conditionally independent given its
realization on c? Π β.

The precise formulation will be given later; here we just mention two
additional points. Firstly, in the definition given above we should consider
only domains a and β depending on τ in a measurable way in some sense.
Secondly, information about the behaviour of a field on the random sets
β, α, and α Π β should be furnished with information about the random
domains α and β themselves.

(1)By a random domain we mean a measurable map of a probability space into a space of
domains 1\Rd) equipped with some natural measurable structure.
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Among the problems concerned with the strong Markov property the
central role is played by the following question. Let us consider a field on
Rd that is Markov with respect to some class of deterministic domains. How
do we characterize the class of random domains with respect to which the
field has the strong Markov property?

The answer to this question is provided by the following result. A Markov
field has the strong Markov property with respect to a random domain r if
and only if r has the following property:

(S) For arbitrary (non-random) domains α <Ξ b and a measurable set D
from the space of domains, the event

Δ = (τ ζϋ, α Ξ τ Ξ b}

should be representable in the form

Δ = I\ Π Γ2 (mod 0),

where the event Γ\ is determined by the realization of the field on b, and
the event Γ2 by the realization of the field on the closure of the complement
of α (see Theorem 6.1).

Random domains τ satisfying the condition (S) will be called splitting.
They are related to splitting times known in the theory of stochastic
processes, see [12]-[15] .

4. The result presented above reduces the study of the strong Markov
property to the study of the condition (5), and so the investigation of
splitting random domains becomes the focus of our attention. First of all
we would like to learn how to construct such random domains effectively.
The key to the answer to this question is the following consideration. It
turns out that splitting random domains can be obtained as solutions of
some stochastic extremal problems related to the given field. We have in
mind extremal problems where a functional and the constraints are random
and depend on the realization of the field. Thus, for example, minimizing
the integral of the field over a domain (or over its boundary) from a suitable
class of domains we obtain as a solution of this minimization problem a
splitting random domain.

An analogous fact can be established in a considerably more general
context. Namely, for the validity of the results of the kind described above
it is necessary, first of all, that the random functional of the domain is
consistent with the field and additive (or, more generally, submodular—
see §7). The class of domains in which we seek the minimum of the
functional should be a lattice*1 * in the sense of a natural partial ordering of
domains: t < s <*• t C s.

(1^A partially ordered set is called a lattice if together with any two elements it contains
also their least upper and greatest lower bounds.
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A special case of the construction described above is the known construction
of splitting time as a minimum point of a stochastic process, see [12] -[15].

Thus, the necessary conditions for an extremum in the problems under
consideration acquire a clear probability meaning: extremality implies the
splitting condition and strong Markov property. This circumstance not only
plays an important role in this paper but also indicates some interesting
prospects for further investigations.

5. We also remark that the extremal problems of the kind we investigate
here often admit a clear physical interpretation. Generally speaking, they
describe optimal processes in random environments. We have in mind the
following. It is known that many processes in nature are connected with the
formation of random and simultaneously energetically optimal configurations.
We can indicate, for example, the formation of cracks in non-homogenous
materials, dislocations in crystals, breakdown filaments in dielectrics, and so
on. The modelling of such phenomena is a very promising area of application
of the theory of stochastic extremal problems. In the present paper we are
unable to discuss these examples in a detailed way. Some recent results in
this direction will be presented in a separate publication.

6. We note, finally, that it turns out to be convenient to present a
considerable part of the exposition in the framework of some general
scheme, namely, in the framework of so-called stochastic models on partially
ordered sets (see §1). This scheme includes fields on Rd (the elements of
the corresponding partially ordered set are domains), "ordinary" stochastic
processes, fields on the space of contours (see [16], [17]), models of the
type of [18] connected with stochastic integration on the plane, and a
whole range of other models.

Such an approach not only gives the advantage of generality, but also
allows us to look into some problems of the theory of random fields and of
the theory of stochastic processes from unified positions. This mainly refers
to the problem of the construction of Markov processes and fields.

In the theory of Markov processes there are at least two general
constructions by means of which from one such process we can construct a
whole class of new ones. They are a change of measure by means of an
additive functional (see [19]) and a random change of time (first presented
in [20]). The construction of Markov fields by means of a change of
measure is well known (see, for example, [5], [9]). However, constructions
by means of random time change have hardly ever been used in the theory
of Markov fields. Stochastic models on partially ordered sets enable us to
understand what is the analogue of the random time change in the general
situation and to use such constructions to build a whole series of interesting
"Markov objects".
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7. The paper has the following plan. In §1-5 we present general results
related to stochastic models on partially ordered sets. In §6, 7 we pass
from abstract stochastic models to random fields on a Euclidean space. In
§8 we give a survey of various examples and applications.

The author wishes to express his deep gratitude to A.V. Skorokhod,
A.N. Shiryaev, and A.A. Yushkevich for their attention to this work, and to
S.E. Kuznetsov for numerous useful discussions of the subject of this paper.

§ 1 . Stochastic models

1.1. Throughout the paper we denote a complete probability space by
(Ω, J F , P).

Let (T, < ) be a partially ordered set, and suppose that to each pair
a, b e T, a < b, there correspond three σ-algebras c4((a, b) s & {i - 1,2, 3)
containing the class JV^JF) of all ^-measurable sets of measure zero. We
say that a family of σ-algebras 3 = {^,·(α, b)} specifies a stochastic model if
the following conditions are fulfilled:

l.A. For each a < a < b < b' we have Jtt (a, b) Ξ At(a', b') (z = 1, 2, 3).

l.B. Jls(a, b) s ^ ! ( a . b) Π Λ,(β, b).
A stochastic model SI is called Markov if for any a < b the σ-algebras

Jh-^a, b) and At(a, b) are conditionally independent with respect to ^ s ( a , 6);
symbolically

Λχ{α, b) Μ ji2(a, b) | ^ 3 ( o , b).

1.2. Let a random element ^ ( ω ) , ω € Ω, of a measurable space Et be given
for each t Ε Τ, that is, let a random function £,(ω), / Ε Τ, be defined. This
random function generates a stochastic model:

Λ1{αΛ) = a{lu t < b); Jl2(a, b) = σ{ξ,, t ^ a};
( ) «*,(<*, 6) = a{6t, a < f < 6} (a < fc, a, fc £ Γ),

where σ{·} is the smallest σ-algebra such that all random elements from the
family {·} and all events from */f(.F) are measurable with respect to it. The
family of σ-algebras defined above has the property:

(1.2) Αι (a, b) = Λ,(&, b), Λ,(α, b) = ^ 2 ( a , a).

Models satisfying (1.2) will be called regular.
We say that a random function ^ ( ω ) is Markov if

o{lP, / > < < } 11 σ{ξ ? . q >t}\ a{l,}, t ζ Τ.

We note that if the model (1.1) is Markov, then the random function
generating it is Markov too. Clearly, the converse is not always true (but it
is true if Τ is linearly ordered). We also note that if 83 = {.*?,-(«, b)} is a
regular Markov model and «?s(/, t) = σ{ζί}, where ξ{ is a random element
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for each t, then ft, t & T, is a Markov random function. Thus in a stochastic
model to each interval [a, b] = {t 6 T: a ^.t ^.b} there correspond three
σ-algebras jlt{a, b) (i = 1, 2, 3) ("past", "future", and "present"). It will be
necessary to consider analogous σ-algebras for random intervals.

To this end we assume that Γ is a partially ordered measurable space, that
is, a σ-algebra ^"is given on Τ and {(/, s): t igC s} 6 5" x J• Moreover, we
suppose that we have a family Μ of maps fk:T^>-T,gk:T^-T(k — 1,2, ...)
satisfying the following requirements: ( 1 )

(I)thesetofvaluesof/ f c(i)andg f e(r)is at most countable (f G Γ, k = 1, 2, ...);
(II) /„(*) f i, *k(i) \ t, t € Γ;
(III) ^"(/h) f 5", y (gk) f $", where ^"(/) is the σ-algebra consisting of sets

of the form f'^T), Γ 6 J\
(IV) for any K s w e have the inequalities fk{t) < /fe(s), gfc(i) < g/c(s)

(A: = 1,2, ...) (monotonicity of the maps fk, gk).
A family of maps Μ = {/Λ, gk} with the above properties will be called a

skeleton^ of a partially ordered measurable space T, and {/ft} and {gh} will
be called respectively the left and ngfti system of maps of the skeleton d>5?.
A stochastic model 21 = {^4(α, 6)} given on Τ will be called continuous (with
respect to the skeleton 3£) if for any a, b £ T, a < b, the following
condition is satisfied:

l.C. As k -> οβ, ^ , ί / ^ α ) , ik(6)) | ^ , (α, 6) (i = 1, 2, 3).

1.3. We note some simple properties of the space Τ with a skeleton •$£,
which will be repeatedly used in the sequel.

Remark 1.1. We fix any k = 1, 2, ... and we consider the countable set (3*
of all intervals of the form [fk(a), gk(b)] ,a,b€.T,a<b. We number the
intervals of <Sfc: ©ft = {Iplt qj, [p2, g2], . . . } . Then the setfft, q2, . . .}
is a countable upper bound for T, and {px, p2 , . . .}is a countable lower
bound for T, that is, for any t Ε Τ there are m and η such that pm<t <<?„.

Remark 1.2. The diagonal £> = {(i, 5) G Γ χ Γ: t = s} of the space Τ χ Γ is
measurable, since

D = {(t, s): t < s} fl {(*, «): « < i} € ̂  Χ ^Γ·

Hence it follows that ST contains one-point sets and any measurable map
into (T, J~) has a measurable graph.

( 1 )If th (k = 1,2, ...) are elements of a partially ordered set T, then the notation th\ t
(tk\t) means that % < t t < . . . . f = sup {tft} (i» > * , > . . . , * = inf {tk}). If 3ΓΚ

(k = 1,2, ...) and ^" are σ-algebras, then we write S"k \ 3" if 3ΓΧ = 5 Ί 5 . . ., 3~ =
= fl̂ "fc and y f c 13" if 5 Ί Ξ 5", = . . . , 3~ = \f3~h (that is, 3" is generated by all
the 3-k).
i 2 )This term was used in [3] and [21] for a different (but similar) notion.
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Remark 1.3. There is a function φ : Τ -> R1 that is measurable and strictly
monotone, that is, φ(ί) < φ(β) whenever t < s, t Φ s. Namely, we consider a
countable set

W = {wv wtt ...}= g l ( T ) U

and we put

(compare a similar construction in [22]). Then for t < s we have /(Y) 2 J(s)
and consequently î (Y) < ip(s), that is, î> is monotone. If φ(ί) — φ(δ), then
/(/) = J(s), s o i < gk{t) {k = 1, 2, ...). Nows < t from (II), and consequently
s = t.

Remark 1.4. We take an arbitrary (not necessarily continuous) stochastic
model ΐβ~ {.#,(α, b)} on Γ. We suppose that the skeleton <W satisfies the
following additional condition:

(V) For any t Ε Τ and m = 1 , 2 , ... there are/, Λ such that fj{fk{t)) >fm(t)
and g,(gk(t)) < gm(t).

Putting

«,(0,6)= Π »/(/m(o). ^m(6)) (i = 1,2.3),

we obtain a new stochastic model 23 = {i?,(a, ^)}, which we call the closure
of the model 93. This model is continuous, since from (V)

η Φ, (fh (α), gk(t)) = η η #

m=l

1.4. Let α(ω) and β(ω) be two random elements of the space (Τ, JT) such
that α(ω) < )3(ω), ω Ε Ω. Then we call [α, β] a random interval.

For any & = 1,2,... and / = 1, 2, 3 we consider the smallest σ-algebra
ο#?(α. β) with respect to which α(ω), β(ω), and all events of the form

(1-3) Γ Π {/*(«) = β, ^(β) = 6}, Γ€ At(a, b),

where a, b Ε Γ, α < b, are measurable. We put

At(a,p)=()AifaP) (i = l, 2, 3).

Remark 1.5. As & increases the σ-algebras Jl\ do not grow, and thus

(1.4) ^ * ( α , β ) Μ / ( α - β ) -

To verify this it is enough to prove that any non-empty set of the form

Δ = ifm(a) = a, gmtf) = b] Π Γ
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belongs to jt\(α, β) for any m > k, a < b, and Γ £ Jli(a, b). According to
(III) there are measurable maps /fc,m, gk,n: Τ -*- Τ such that

(1.5) fh(t) = fh,m(fm(t)), gk(t) = gh,m(gm(t))

(m > k). Hence

(1.6) Δ = Ξ Π Ξ ' , 5 = {/m(a) = a, gm{fi) = b),

(1.7) S' = {/fc(a) = a', ft (β) = 6'} Π Γ,

where a' = fk,m(a), fc' = gk,m(i>). Moreover, a' < a, b' > b by (II), hence

Γ 6 ^i(a, b)^.Jli(a', b'). Thus, Ξ, Ξ' £ Λί*(α, β), which proves our claim.

Remark 1.6. The above definition of σ-algebras Λ An. β) (i = 1, 2, 3)
(describing "past", "future", and "present" for the random interval [α, β))
depends, in general, on a previously fixed skeleton M'- However, in particular
examples it is often possible to establish the invariance of this definition
with respect to the choice of $£ so long as ©%? satisfies some supplementary
regularity conditions. Namely, this happens for stochastic models related to
random fields on Rd (see Lemma 6.3 and Remark 6.2).

Remark 1.7. A whole series of examples refers to models where the set Τ is
finite or countable. In this case we assume throughout that & consists of
all subsets of Τ and fk(t) = gk(t) = t.

§2. The strong Markov property. Splitting random elements

2.1. Throughout §2-5 we assume that a continuous stochastic model
3 = {<4i(a, b)} is given on a partially ordered space (T, J, <:) with a
skeleton ffl = {/*, gh}·

If Αι and <d% are two sets of events, then we denote by c^i^ 2 the set of
events that can be represented in the form Γι Π Γ2, where Γ\ £ ^ j , Γ2 6 Az-

A random element τ(ω) (ω € Ω) will be called splitting if the following
condition is satisfied:

(<y) For all a < b, a, b e T, and any D Ξ [a, b), D 6 J, the event
{r € Z)} belongs to jt^a, b)^it(a, b).

We say that a model & has the strong Markov property with respect to a
random element τ if the following condition holds:

(^e*) For any random elements α and j3 such that

α(ω) < τ(ω) < β(ω), α(ω) = /(τ(ω)), β(ω) = *(τ(ω))

(f, g'-T -*• Τ are measurable maps) the σ-algebras ^ι(α, β) and Jl2(a., β) are
conditionally independent with respect to As(a, β).

Theorem 2.1. Let % be a Markov model. For it to have the strong Markov
property with respect to τ it is sufficient that the random element τ is
splitting. This condition is necessary if the following supplementary
condition is imposed on the model:
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2.A. For any t G Τ and k = 1,2,...

2.2. Theorem 2.1 is proved by means of the following Lemma 2.1, whose
proof can be found in [24] (a somewhat more general result was obtained
earlier in [23]; compare also [14]).

As always, let (Ω, &, P) be a complete probability space. For convenience
of presentation, let us agree to call any three σ-algebras ? i S / ( i = l , 2 , 3)
a Markov system if

*i 11 «i I «a, JT(&) Ξ «, Ε Ρ, Π ^ 2

(it is clear that we then have # s = %x f) ^2)·
Let TV be a countable set, and let a Markov system of σ-algebras

ifi(n) (i = l, 2, 3) correspond to each η G N. For a random element
γ(ω) £ iV (ω € Ω) we denote by isj(Y) (i = 1, 2, 3) the σ-algebra generated
by the events

(2.i) {V = Β} ηr, re?,(»), «e w.

Lemma 2.1. For //ze σ-algebras isf(v) (i = 1, 2, 3) to /ο/τη α Markov system
it is sufficient that the random element y satisfies the condition

(2-2) {v = n) 6 8I(«)£,(B), «eiV.

7n/s condition is necessary if the following additional requirement is
fulfilled:

(2.3) if,(«) V «2(») = / . « £ Λ".

2.3. We establish two more auxiliary propositions.

Lemma 2.2. Ze/ λ = [α, β] be a random interval in Τ having a finite or
countable set of values L. Then for each i = 1, 2, 3 the a-algebra
^,(λ) = «7<it(a, β) consists of events of the form

(2.4) U {λ = Ζ>ηΓ,, Γ,ζ^,(Ι).
it L

Proof. 1) We put

(2.5) hh(l) = t/fe(a), Λ ( 6 ) ] , Ζ = [a, b).

We fix an index / = 1, 2, 3 and omit it from now on.
We consider the class #*(λ) of sets representable in a form like (2.4) but

with Γ, 6 J(hh{l)), and we claim that J*(K) = ^ Α (λ) == ***(«, β). We note,
first of all, that the class < *̂(λ) is a σ-algebra containing events of the form
{λ = /} = {a = α, β = b}. Further, if Δ = {Λ,,(λ) = Γ} [}Τ, where
Γ 6 Λφ'), then
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since Γ £ Λ{1') =J{hk(l)). Thus, ^"(λ) contains all events generating Ακ(λ),
so ^ί*(λ) ΕΞ ̂ *(λ). The reverse inclusion follows from the chain of relations

{i=i} η Γ ί = = { λ = ο η {Μλ)=ΛΛ(ζ)} η

where Γ, 6 A(hh(l)).
2) Now let Σ ζ jt(X) = Π ̂ Λ (λ) . Then, as we have just shown, for any

λ-= 1,2,...

{ }

Consequently, Σ = U [{λ = 1} ft Γ,Ι, where Γ, = lim inf Γ? € Ail), from 1 .C
and (2.5). Conversely, if an event S can be represented in the form (2.4),
then from l ) S f Ah(ty for any k, arid consequently Ξ ζ AQ*). The lemma
is proved.

2.4. Lemma 2.3. Let λ = [α, β] be a random interval such that

(2.6) ifk(a) = a, gh($) = fe} 6 . ^ ( a , &M t(a, 6)

/or all k = 1,2, ... awd a, b € Γ, a < b. If the model is Markov, then

(2.7) Λι(α, β) il ^ , ( a , β) Ι ̂ , ( ο , β).

Proof (compare [24]). For / = 1, 2, 3, k, m = 1, 2, ..., k < m, we denote
by ^{'"(λ) the σ-algebra generated by events of the form

{hh (λ) = Γ, hm (λ) = / > η Γ , Γ ζ Jli (I1),

where / = [a, b] and /' = [a', b') are all possible intervals in T. By property
(III) of the maps {fh, gh} (see § 1) we have ^•"'(λ) f ^?(λ). Moreover,
according to (1.4), ^?(λ) | AiQ<-)- Thus, since the property of a system of
three σ-algebras of being Markov is preserved by the limit passages t and I,
to prove (2.7) it is enough to show that the system Jl\'m(λ) (i = 1, 2, 3) is
Markov for any k < m.

To this end we fix k < m and turn to Lemma 2.1. We denote by 7 the
pair of random intervals (hm(\), hk(X)), and by iV the set (at most countable)
of all values of 7. For η = (I, /') € Ν we put «,·(«) = Ai(l') (i = 1, 2, 3).
Then Ai'm0i) = £J(Y), which follows directly from the definition of the
σ-algebras. The condition (2.6) gives {y = η} = Ι\ ΓΙ Γ2 Π Γ; Π Γ;, where
Γί 6 Αι(Ι'), Γ, ζ Αι(ΐ), and since {γ = ή] Φ 0 , we have / C /' (since
Μ λ ) £ Μ λ ) ) , and so Γ, 6 Ai(l'Y Thus, {γ = η} € «i(i»)«t(»)» and so
drawing on Lemma 2.1 we conclude that £,(γ) = ^?'m(X) (i = 1, 2, 3) is a
Markov system.

2.5. Proof of Theorem 2.1. In view of Lemma 2.3, to prove the sufficiency we
need to check only the condition (2.6) for random intervals [α, β] = [/(τ), g(r)]
described in (SOM). If the event indicated in (2.6) occurs, then

a = fh(f(r)) < /(τ) = α < τ < β = *(τ) < **(ί(τ)) = 6,
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and consequently this event can be represented in the form {τ ζ_ D), where

D = {te \a, b): /,(/(/)) - a. gk(g{t)) = b) 6 S.

Thus, (2.6) follows from
To demonstrate the necessity we assume that {Sall) and 2. A hold, we fix

any [a, b], .7 3 D s [a, b], D Φ 0 , k 2? 1 , and we show that

(2.8) Δ = (τ e D) ζ Λι (β, ϊ) Λ 8 (β, 5),

where α = fkia), b = gkib). Passing to the limit as k -> °° and employing the
continuity of the stochastic model, we obtain the required property:
Δ 6 ^j(o, b)c42{a, b). The limit passage is justified for the following
reason. If Jt\ \ At (i = 1, 2) are two sequences of σ-algebras and
Δ = Af ΓΙ Δ* β^ι^ί-i for all k, then Δ 6 ^ i ^ 2 since Δ = At Π Δ2, where

Δ,·= U Π Δ ί ζ Λ , .
η

Let us verify (2.8). We denote by / the countable set of intervals of the
form [fm{t), gm(t)] (m = 1,2, ..., t € T) that are different from [a, b], and
we observe that for any t fc D there is an interval [a1, b'] E.J containing it.
For otherwise fm(t) = Έ, gm(t) = b for all m. Hence Έ = t = b (since
fm(t) \ t and gm(t) j t)and so t G D, which is a contradiction. We number the
elements of J and taking into account the above remark we define the maps
/ g: Τ -* Τ by putting [/(/), g(t)] = [a, b] for / G D, and fortfcD taking
[fit), git)] to be the interval with the least number, belonging to / and
containing t. It is clear that / and g are measurable, fit) < t < git), and

(2.9) {τ€#}

We consider the random interval [α, β] = [/(r), g(r)]. By (cf^),
^ i ( a , β) (i = 1, 2, 3) is a Markov system of σ-algebras, and Ai(a, β) are
given by (2.4), because [α, β] takes a countable set of values. Moreover, for
any value [p, q] of the interval [α, β] we can find i, t G Τ and / = 1, 2, ...
such that

[p, q] = [/(*), g(t)] 3 i

and consequently^^/?, q) V ^2(/Ί ?) = -^ by 2.A. This condition
together with (2.4) allows us to apply Lemma 2.1 to y = [a, /J] and to
obtain the relation (2.8) using (2.9).

2.6. Remark 2.1. Let (Γ, J", < ) be a partially ordered measurable space,
let {gh(t)}kLi be a right system of maps, and for each t Ε Τ, let B,(t)
(/ = 1, 2, 3) be a Markov system of σ-algebras in (Ω, .-Γ, Ρ), where

&(0 (* — oo) and
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whenever t < s. For a random element τ of the space Τ we put

ίΜΌ ==: Π ίΜΌ, where t*{x) is generated by τ and by the events

= <} Π Γ, Γ 6 «ι(0· If for any t G Γ and D 6 ^ , # s {s: s < f} we
have {τ 6 £>} € $i(i)£t(0> then £,(τ) is a Markov system of α-algebras. The
converse implication is valid under an additional hypothesis:

*i(*»(9) V «.(*»(«)) = ^ ·

This fact generalizes Theorem 2.1 and can be proved similarly. On the
other hand, under the condition that in (7\ J", ^1) there is a left system of
maps {/*(<)}, this result is a direct consequence of Theorem 2.1 (one needs to
put

§3. Extremal problems and splitting random sets

3.1. Our further aim is to describe various effective constructions of
splitting random elements. An intermediate step to achieving this aim will
be the investigation of a class of random subsets of T, with similar properties
to the class of splitting elements/1)

Let a set Ζ(ω) Q Τ (possibly empty for some ω) correspond to each
ω € Ω. We say that Ζ(ω) is a random set if for any D £ S~

(3.1) {ω: Ζ(ω) {] D =£0}<EJF.

We call a random set Ζ(ω) splitting if for any a < b (a, b G T) and

(3.2) {ω: Ζ(ω) f)D φ 0} 6 ^ι(α, b)J2(a, b).

We note that (3.2) implies (3.1) (since, by virtue of Remark 1.1, Γ can be
represented as a union of countably many intervals). Moreover, if Ζ(ω)
consists of one point τ(ω) for each ω and if it satisfies (3.2), then τ(ω) is a
splitting random element.

3.2. Let F(OJ, t) be a real-valued functional defined for ω ε Ω and
t G Ζ(ω) Q T. We denote by Ζ(ω) the set of all s G Ζ(ω) such that
F(oo, s) < F(oo, 0» t G Ζ(ω), that is, the set of the points of Ζ(ω) where
F(OJ, ·) attains its minimum.

In this section we give conditions on Ζ and F under which the following
assertion is valid: if Ζ(ω) is a splitting random set, then Ζ(ω) is also a
splitting random set. Results of this kind can be used to construct splitting
random elements. For let us suppose that we have proved that Ζ(ω)
consists of exactly one point τ(ω) for each ω._Τηβη, as we mentioned
above, τ(ω) is a splitting random element. If Ζ(ω) contains more than one

( 1 ) In applications to fields on Rd (see §§6, 7) the elements of the space Τ are domains,
and random subsets of Τ are random classes of domains.
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point, then we can repeat the previous operation, considering another
functional <?(ω, t) on Ζ(ω) and the set of its minimum points. Iterating
this procedure, we can obtain one-element splitting random sets at some
(finite or infinite) step. _

In many concrete examples the random set Ζ(ω) obtained after the first
step contains its infimum τ(ω) = inf Ζ(ω) (understood in the sense of the
partial ordering given on 7), and the random element τ(ω) turns out to be
splitting. The splitting property of τ(ω) is established by using the fact that
the element τ(ω) = inf Ζ(ω) is the unique minimum point of any strictly
monotone functional^> Φ(ί), t G T. Thus, to construct τ(ω) we first
minimize F{iu, t) on Ζ(ω) and then Φ(ί) on Ζ(ω), that is, we repeat the
procedure twice.

We remark also that in particular examples the set Ζ or the functional F
may not depend on ω, see §8. (A set Ζ that is independent of ω is a trivial
example of a splitting random set.)

3.3. We introduce some definitions and notations which will be necessary in
the sequel.

We assume that to each a, b G T, a < b, there correspond two non-empty
sets Μγ(α, b), M2(a, b) Q Τ (left and right zones for the interval [a, b])
satisfying the following properties: (Ml) if [a, b] Q [a1, b'] then
Miia, b) C MM', b') (/ = 1, 2); (Λί2) [a, b] C MM, b) {i = 1, 2);
(M3) M,{a, b) ζ J (i = 1.2); {MA) the set {ν: ν < /} is contained in the
union of M^t, t) and M2(t, t).

The most important example of Mt{a, b) is the following:

(3.3) Λ/,(ο, b) = {/: t < b}, M2(a, b) = {t: t > a)

(regular zones). Whenever we discuss regular models (see §1.2) we assume
that Mt{a, b) have the form (3.3). Zones of a different type arise in a
natural way in connection with the models described in §8.8.

Let F(t) be a real functional defined on some set Ζ Q T. (We assume
here that F and Ζ do not depend on ω.) We call F(t), t G Z, sufficient if
the following condition holds:

(*) For any t Ε. Ζ the relations

F(a) > F(t), α ζ M1(t, t) Π Ζ,
( ' F(b) > F(t), b 6 M2(t, t) Π Ζ,

give F(s) > F{t), s EZ.
The inequalities (3.4) mean that in the left zone Μχ{ί, t) and in the right

zone M2{t, t) there are no points 5 G Ζ such that F{s) < F{t). According to
(*), the relations (3.4) are sufficient conditions for a minimum of F on Ζ (it
is clear that these conditions are always necessary).

existence of such functionals on Τ follows from Remark 1.3.
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Proposition 3.1. Let F{t), t Ε Ζ, be a sufficient functional, a < b, a, b Ε Τ,
and 3~ 3-D s [a, b]. Then the following statements are equivalent: (a) F( ·)
attains its minimum on Ζ at some point t Ε D; (b) for each i = 1,2 i/ze
minimum of F( ·) o« Λ/,·(α, fe) η Ζ is attained at some point tt Ε D (Ί
η Λί,·(α, ft) η ζ .

/Voo/ To get (b) from (a) we put tt = t, since t & D Q [a, b], and from
(Λί2) we have t Ε Λί,·(α, b).

Now let (b) hold, that is,

(3.5) F(s) > F(tt), seZi==Z Π Μ,(α, 6).

Since tt ς Ζ) Ξ [α, fc] = Λ/^α, 6) ΓΙ Μ2(α, b), we have tt ζΖ^ [)Z2 {}D.
Hence from (3.5) we obtain

(3.6) Fih) = F(tt).

We put t = tv Then for every s Ε Ζ Π ./ (̂f, ί) we have F(s) > F(i).
Indeed, s Ε Ζ,-, since Ζ η Λί,·(ί, t)<kZC\ M((a, b) (see (ΛΠ)) and from (3.5)
and (3.6) we get F(s) > F(i,·) = F{t). Applying the sufficiency of F we
conclude that t Ε D is the minimum point of F on Z. The proposition is
proved.

3.4. Let a set Ζ(ω) C Γ correspond to each ω Ε Ω and let a real functional
F(oo, t) be defined (ω Ε Ω, t Ε Ζ(ω)). We say briefly that this functional is
sufficient if for every ω it is sufficient with respect to the variable t Ε Ζ(ω).

The sufficiency property will play a key role in accomplishing the
programme outlined in §3.2. But we will need some more conditions
expressing the consistency of F(w, t) and Ζ(ω) with the given stochastic
model {jfi(a, b)}.

For a, b E. T, a < t , we put

(3.7) F?' b (ω, ί, s) — \ {&, ) , , i[ ,
I + oo otherwise.

We call the functional F(cu, i), t Ε Ζ(ω), local i

(3.8) ^ ' ( ο , Μ ) ^ , ( « , 6 ) χ 5 - χ . ί

From (3.8) and (3.7) it follows that

(3.9) {(ω, Ζ): * 6 Ζ(ω) Π Μ,{α, b)} 6

for all a < 6 and i = 1,2 (the property that the set Ζ(ω) is local).
The conditions (3.8) and (3.9) mean, respectively, that, the increments of

the functional F and the construction of the set Ζ(ω) in the zone Λί,·(α, b}
can be defined using only the information contained in the a-algebra^i(e,b)
(see also Proposition 3.2 at the end of this section).

(1)The symbol ξ is used here to denote the measurability of functions with respect to
σ-algebras.
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Now, if Γ C Ω and & is a subalgebra of 3F, then we denote by ^ | r the
σ-algebra of all events Δ £ & such that

Δ Π Γ = Δ' Π Γ

for some Δ' 6 ^ . We put

Qf (a, b) = {ω: Ζ (ω) Π Μ, (Λ, b)=£0}

and

^ f ( a , 6 ) = ^ l ( a , f c ) | Q z ( a f c ) .

We say that a functional F(aJ, t), t G Ζ(ω), is weakly local if

(3.10) *?'*(«>, f, * ) 6 r f # f ( e , 6 ) X ^ ' x ^ '

for all a < 6 and i = 1,2. From (3.10) and (3.7) we find that

(3.11) {(ω, *): t ζ Ζ (α) Π Af, (α, 6)}e^f (α, δ) Χ 5",

where / = 1, 2, a, i 6 Γ, α < i (Ζ(ω) is weakly local).

The condition (3.10) has the following meaning. If it is known that the
domain Ζ(ω) of a functional F(co, t) intersects the zone Mt(a, b), then we
can define increments F(OJ, t) — F(w, s) on the intersection Ζ(ω) Π Μ;(α, b)
employing the information contained in Jtt{a, b) (i — 1, 2). (3.11) can be
interpreted similarly.

We remark that local sets (or functionals) are weakly local, since
jii(a, b) <=,<Α\{α, b). If the domain Ζ of a functional F does not depend on
ω, then the conditions (3.8) and (3.10) are equivalent, since then Slf{a, b) is
empty or coincides with Ω. (See also Proposition 3.2.)

We call a random element τ(ω) local or weakly local if the one-element
set {χ(ω)} has the corresponding property. An equivalent definition will be
given in Lemma 5.1.

3.5. Up to the end of §5 we assume that the measurable space (7\ $")
satisfies the following condition:

3.A. There exist a standard measurable space ( 1 ) (E, %) and a measurable
map Θ: (£, I) ->• {T, J) such that Q(E) = T.

The main result of this section is the following.

Theorem 3.1. Let F(co, t), t Ε Ζ(ω), be a sufficient weakly local functional
and let

(3.12) Ζ(ω) = {ί ίΖ(ω): F{ω, t)= min F(ω, s)}
v »£Ζ(ω)

be the set of its minimum points on Ζ(ω). // Ζ(ω) is a splitting random set.
then Ζ(ω) is also a splitting random set.

measurable space is called standard if it is isomorphic to a Borel subset of a
complete separable metric space.
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We first establish Theorem 3.2, formulated below, whose first part is used
in the proof of Theorem 3.1.

Theorem 3.2. Let F(CJ, t), t G Ζ(ω), be a weakly local functional. Then
the following assertions are true: 1) for any a <*b, a, b G Τ (i = 1,2),

(3.13) {(w,tV ίζΖ^ω, ο, b))£df(a, tyxj,

where Ζ,·(ω, a, b) is the set of minimum points of the functional F(w, t) on
the set

(3.14) Ζ^ω, a, b) = Ζ(ω) f] Mt(a, 6);

2) if Ζ{ώ) is a random set, then Ζ(ω) is weakly local.

3.6. The proofs of Theorems 3.1 and 3.2 are based on some general lemmas.
As before, let (Ω, #") and (T, $~) be two measurable spaces, where the

first is complete with respect to the measure Ρ and the second satisfies
condition 3.A. Let Δ be an arbitrary set from J5" X 5~.

Lemma 3.1. The projection pm Δ is measurable with respect to JF.

Lemma 3.2. There is a measurable map | : (Ω, $F) -*• (Τ, 3Γ) such that
(ω, ξ(ω)) € Δ for all ω 6 prQ Δ.

In the case of standard (T, 9~) Lemmas 3.1 and 3.2 can be found, for
example, in [25], [26]. The general case reduces to this one in the
following way. We put

Δ' = {(ω, ί ) ζ Ω χ ί : (ω, θ (e)) £ Δ},

where θ: Ε -*• Τ is the map described in 3.A. It is clear that Δ' 6 SF x %
and pro Δ = prQ Δ', since θ(2?) = Τ. Moreover, if (ω, 1'(ω)) 6 Δ' for
ω € pre Δ', where ξ': (Ω, &) -*• (Ε, t) is a measurable map, then the
desired map £(ω) can be defined by the formula £(ω) = θ(ξ'(ω)).

Now, let Φ(ω, 0 be a ^"X^"-measurable map on Ω χ Τ with values in

Lemma 3.3. The function Φ(ω) = inf Φ(ω, t) {taking values in

Ft1 U {—oo} U {+00}) is measurable with respect to 2F.

This follows immediately from Lemma 3.1, since

{ω: Φ (ω) < r} = pro{(a>, ί): Φ (ω, ί) < r}, τ ξ. R*.

Lemma 3.4. Let a set Υ(ω) Q Τ correspond to each ω G Ω and let a real
function Η{ω, t) be defined for each ω G Ω, t G Υ{ω). Let the function

Η (ω, t)—Η (ω, s), ί, s ζ Υ (ω),
>, ί, s) = ·, . ,

+ oo otherwise,
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be measurable with respect to j~ χ J χ &'. Then

(3.15) {(ω, t): ΙζΥ{ω), H(ta, *) = min Η(<ύ, s)}£:f x J .

Proof. We note first that

Δ == {(ω, t): t 6 Υ(ω)} = {(ω, t): Η(ω, t, t) < oo) 6 & X ^ ,

and consequently by Lemma 3.2 we can find a measurable map
\\ (Ω. ;f) -*- (T, 3) such that (ω, ξ(ω)) 6 Δ for ω 6 Ωο = {ω: Υ(ω) φ 0 } .
The function <7(ω, /) = //(ω, ί, ^(ω)) takes values in Β1 \j {+00} and is
.F χ .^-measurable. Hence by Lemma 3.3 the function G(a>) = inf G(a, i)

is measurable with respect to $F. Consequently,

(3.16) {(ω, t): + oo>G(ω) = G(ω, t)}£.f X J.

We claim now that the sets in (3.15) and (3.16) coincide (we denote them
by Q and D respectively). Let (ω, t)GD. Then G(OJ, t) < +°°, consequently
t € Υ(ω), ω G Ωο>

 a n d

(3.17) #(ω, t) - Ν(ω, ξ(ω)) = G(io, t) < G(w, s) =

= #(ω, *) - ^(ω, |(ω)), s 6 Υ (ω).

hence Η(ω, t) < ίί(ω, ί) for s G ]Κ(ω), that is, (ω, t) e β. Conversely, if
(ω, t) G Q, then ί G Κ(ω), ω G ί20, and for any s G Κ(ω)

- f o o > <?(ω, /) = ̂ (ω, <) - #(ω, 1(ω)) < /Γ(ω, s) — Η(ω, ξ(ω)) = G(o>, s).

For 5 ̂  y(oj) we have &(ω, 5) = +°° and consequently the inequality
(7(ω, t) ̂  ί?(ω, s) holds for all 5 G T. Hence we conclude that (ω, t) G Z).
The lemma is proved.

Lemma 3.5. Let § be a σ-subalgebra of <Fand let Γ £ JF. A set A belongs
to the σ-algebra & | Γ χ 3" if and only if

(3.18) A^IA' ()(TxT)] [) IA" [} (Γ χ Τ)),

where A' 6 & x J, Α" ζ. & χ. Γ and Te = Ω\Γ.

Proof. From the definition of the σ-algebra y | r (see §3.4) it consists of
those events Δ for which

(3.19) Δ = (Δ'ηΓ)ϋ(Δ"ηη, Α'ξ3, Δ'ί?.

We consider the class S6 of sets A of the form (3.18). This class is a
σ-algebra. It contains all sets Δ χ Β, where Β £3 and Δ has the form
(3.19), consequently, S6 contains 3 Ir X 3~- Conversely, the classes

-: Α" Π
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are σ-algebras. and for Δ' £ 3, Δ" ζ &, Β £

Consequently, G<#I 3 g X ^ , <^2 2 . f x J and so 1? s S | Γ Χ JT.

3.7. Proof of Theorem 3.2. 1) The relation (3.13) can be obtained by
applying Lemma 3.4 to the measurable spaces (Ω, Λ\{α, b)) , (Γ, :T), and
the functional Η{ω, t), t G Υ(ω), where Η(ω, t) = F(GJ, 0 and
y(co) = Ζ(ω) Π Λί,·(α, ft). This lemma is indeed applicable in the situation
considered here, since the measurability condition for Η(ω, t, s) follows
directly from the definition of the weak local property of F(CJ, t), t Ε Ζ(ω),
and the sets in (3.13) and (3.15) coincide. Moreover, the space (Ω, .Af(a. b))
is complete with respect to the measure P, since ,df{a, b) Ξ Jr'(JF) and the
σ-algebra & is complete.

2) To show that Ζ(ω) is weakly local we fix a < b and note that if for
some ω the intersection Ζ(ω) Π Mt(a, b) is non-empty, then for this ω

(3.20) Ζ (ω) Π Μ, (a. b) =- Zt (ω, a. b).

In fact, if t G Mt = M((a, b), t € Ζ(ω), and t minimizes F = ^(ω, ·) on
Ζ = Ζ(ω), then, of course, t minimizes F on Ζ Π Μ,·. Conversely, if we
know that Ζ Π Λ/,· ¥= 0, that is, F has a minimum on Ζ at some point
s £ Ζ Π Jlf,·, then any point t Ε. Ζ C\ Mt realizing the minimum of F on
Ζ Π Μ, will also realize the minimum of F on Z.

Next, we note that

(3.21) Δ=={(ω, t): ί£Ζ; (ω, a, 6)}cS. χ Γ,

where

(3.22) Ω, = {ω: Ζ (ω) R Α/,-,-φ 0) = {ω: Ζ (ω) Π A/f # 0 } as Ω, ξ .-Γ.

As we established in 1), Δ 6 Jl*(a, b) χ 5~. Consequently, by (3.21) and
Lemma 3.5, Δ can be represented in the form

Hence from (3.20) and (3.22) we find that

{(ω, t): t£Z (ω) Π Mt) = Δ Π (Ω, Χ Τ) = Δ' Π (Ωί χ Γ), Δ' ζ J, (a. 6) Χ .Τ

which in view of Lemma 3.5 leads us to the desired result:

{(ω,ί): ί£Ζ(ω) Π Λ/j} £*«!(«< *»)X.J\

3.8. Proof of Theorem 3.1. We fix a < b and .Γ 9 D s la, 6L Because F
is a sufficient functional, from Proposition 3.1 we get

4es{o): Ζ(ω) Π

where

Ai = {(a: ·Ζ{(ω, β, 6) f i £>¥= 0}=ΡΓΩ{ω, ί): ί ζ Z f<«;a,6) Π £>}£^f (a,
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as a result of assertion 1) of Theorem 3.2 and Lemma 3.1. This means that
At = A( Π Ω,· = Α\ Π Ω,·, where A\ 6 Λι(α, b) (see (3.22)). Thus,
A = A, Π A2 = At (]A2f] {ω: Ζ(ω) Γ) Οφ0} =

=Α[ η ^: η Ω, η Ω2 η {ω: ζ Μ η # ¥ = 0 ) =
= Α[ΠΑ-2{] {ω: Ζ (ω) (]Οφ0}.

since Ζ(ω) Π Ζ) φ φ implies that Ζ(ω) Π Μ Φ φ (because 7l/,(a, b) s
= [c. frfe # ) . It remains to observe that

A--=A[ Π ^ Π {ω: Ζ (ω) Π />¥= 0 Κ ^ ι («· 6) Λ 2 (α. b)

because Ζ(ω) is a splitting random set.

3.9. To conclude this section, drawing on Lemma 3.1 (which is valid under
condition 3.A) we prove the following result.

Proposition 3.2. Let a set Ζ(ω) C τ correspond to each ω e Ω. If Ζ(ω) is
weakly local, then Ζ(ω) is a random set. If Ζ(ω) is local, then Ζ(ω) is a
splitting random set.

Proof. To show that Ζ(ω) is a random set it is enough to prove (3.1) for
any set /?£./* contained in some interval la, b] C J. (Each D ζ JTis a
countable union of such sets.)

L e t , / " ( Z ) c la, b\. Then by (Λ/2) the set Γ = {OJ: Ζ(ω) f) D φ 0} can
be represented in the form

Γ = prQ {(ω, /): t 6 Ζ(ω) f] Λ/,ίβ, fc) pZ>}.

If Ζ(ω) is weakly local, then Γ 6 c^f(a, fc) S jf from (3.11) and Lemma 3.1.
If Ζ(ω) is local, then from (3.9) and Lemma 3.1 we get Γ £j(i(a, ft), which
necessarily gives (3.2).

§4. Constructions of splitting elements based on the solution of extremal
problems

4.1. Drawing on the results of the previous section, we prove some general
theorems on the construction of splitting random elements. The constructions
presented here are based on arguments contained in §3.2.

Let Ζ be a ^-measurable subset of T, and Fm(o>, t), t € Ζ (m = 1, 2, ...)
a sequence of local functionals with (non-random) domain Z. We assume
that for each ω the functionals {Fm(o), ·)} separate points of Z, that is, for
any t, s £ Z, t Φ s, there is an m such that Fm(w, /) Φ Fm(oj, s). Next, we
assume that a Hausdorff topology is given on Z, and with respect to it all
functionals Fm(cj, ·) are lower semicontinuous and all sets of the form
ZC\\a, b} (a, b e T) are closed.

Let Ζ 0(ω) C Ζ be a local random set, non-empty and compact for all ω.
We define by induction the sequence of sets Ζ0(ω), Ζ^ω), Ζ2(ω)
denoting by Zm(co) the set of minimum points of ^ ( ω , /) on Zm_,(a>). We
assume that for all m the restriction //m(co, t) of Fm(co, t) to Ζη,.^ω) is a
sufficient functional.
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Theorem 4.1. For every ω the intersection Ζ£ώ) Π Ζ χ(ω) Π ... consists of
one element τ(ω), which is weakly local and splitting.

4.2. The proof of Theorem 4.1 is based on the following lemma.

Lemma 4.1. Let Ζ(ω) be a local set, where for any interval [a, b]

(4.1) {ω: Ζ(ω) Π Ια, b] φ 0 } € ^ ( β , b)jlt{a, b).

Then Ζ(ω) is a splitting random set.

Proof. If f 3 D = [a, fc], then

(4.2) {ω: Ζ(ω) Π # # 0 } = {ω: Ζ(ω) Π [α, *>1 ¥= 0 } Π Β,

Β = {ω: Ζ(ω) Π Μτ(α, b) f)D Φ0},

since D Q [a, b] Q Μχ{α, b). Moreover,

Β = pr 0 {(ω, t): t£Z (ω) Π Mt (α, 6) Π ̂ } € -if (α, *>)>

drawing on the fact that Ζ(ω) is weakly local and on Lemma 3.1.
Consequently,

Β = # ! Π {ω: Ζ(ω) Π -Μι(β. &) ¥= 0 } , where Βχ € Αχ{α, b).

Applying the relation [a, b] Q M^a, b), we conclude that in (4.2) Β can be
replaced by Bu and together with (4.1) this gives (3.2).

4.3. Proof of Theorem 4.1. For each ω the sets Ζη(ω) (m = 1, 2, ...) are
non-empty, compact, and form a chain, consequently their intersection is
non-empty. It has only one element, since if t, s € Ζ(ω) Q Zm(co), then

Fm((u, s) = min {Fm(to, u), u 6 Zm^(<a)} = Fm((o, t),

which means that t = s, since the functionals {Fm(j>>, ·)} separate points.
We prove by induction that Zm(oj) is a weakly local splitting random set

for any m. For m = 0 this is a consequence of Proposition 3.2. Let it be
true for m — 1. Then the functional Hm{p3, t) = Fm{oi, t), t 6 Ζ,η_1(ω), is
weakly local, since for any r € R1 and any [a, b]
{(ω, ί, s): Fm((u, i ) - F B , ( « , s ) < r , f, seZ m . t ((o) Π Λ/, (ο,

~ 1 ( a ' &) Χ.9" Χ .Γ

because Fm(a>, ?), ί ε Ζ, is local and Ζ,η^ίω) is weakly local. Using
assertion 2) of Theorem 3.2 we conclude that Z m (w) is weakly local in view
of the fact that Ηη(ω, t), ίςΖ,,,.^ω), is sufficient and Zm(co) are splitting
random sets by Theorem 3.1.

Now we show that Ζ(ω) = (τ(ω)} is a weakly local splitting random set.
We fix a < b, i = 1, 2, and note that

{ω: Ζ(ω) Π Μ,{a, b) φ 0} S {ω: Ζηι(ω) Π Λ/ι(β, &) # 0 } .
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consequently Jim(a, b) s .Vf(a, b). Therefore, because Z m (w) is weakly
local,

rmS={(<0. t): f£Zm((*)f\Mt(a,b))tJ.f(a,b)xJ'.

Hence

{(ω, t): t£Z (ω) Π Μ, (α, b)) = Π Tm£jf (a, 6 ) x J ,

that is, Ζ(ω) is weakly local. Next, since Zm(u>) are compact sets forming a
chain and the interval [a, b] Π Ζ is closed, we have

{ω: Ζ (ω) Π [β, ^ ] ^ 0 } = Π {ω: Z m (ω) Π [β, 6] ̂  0 } £Λι(«, &M S (β, δ),
« η = 1

where the last relation is valid since Zm(to) are splitting random sets for all m.
To complete the proof of the theorem it remains to refer to Lemma 4.1.

4.4. Theorem 4.2. Let Ζ(ω) be a splitting random set, let F(OJ, t),
t Ε Ζ(ω), be a weakly local sufficient functional, and let Ζ(ω) be the set of
minimum points of F(aj, ·) on Ζ(ω). If for each ω i/?e partially ordered set
Ζ(ω) contains its greatest lower bound τ(ω) = inf Ζ(ω), iftew τ(ω) is a
weakly local splitting random element.

Before we prove this theorem we establish two auxiliary propositions.

Proposition 4.1. Let Ζ be a subset of Τ and F(t), t Ε Ζ, a real functional
(F and Ζ are non-random). Let the functional F be monotone, that is,
F(t) < F(s) for t < s, and let the set Ζ be directed to the left, that is, for
any t, s Ε Ζ there is a v & Ζ such that υ < t and υ < s. Then the functional
F(t), t Ε Ζ, is sufficient.

Proof. Suppose that for some t Ε Ζ the inequalities (3.4) hold. We take an
arbitrary s Ε Ζ and consider p £ Z such that υ < t, υ < s. From condition
(Λί4) (see §3.3) we get υ Ε Mt(t, t) for some / = 1,2. Then F{v) > F(t)
because of (3.4), and F(s) > F(v) > F(t) because F is monotone, that is, t is
a minimum point for F, as required.

Proposition 4.2. Let To 6 & and let φ(ί), t Ε Το, be a ^-measurable
functional independent of ω. // Ζ(ω) £ To is a local (respectively, weakly
local) set, then the restriction of φ(ί) to Ζ(ω) is a local (respectively, weakly
local) functional.

Proof. This is true because for any r Ε R1, i = 1, 2, and a < b the set

{(ω, t, s): ψ(ί) - <p(s) < r, t, s ζ Ζ(ω) f] M,(a, b)}

belongs to the σ-algebra J^a, i ) x / x j o r ^f(a, fc) x^"x.9", depending
on whether Ζ(ω) is local or weakly local.
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Proof of Theorem 4.2. By Theorem 3.1 Ζ(ω) is a splitting random set and
it is weakly local by Theorem 3.2. Let Φ(ί), t £ Ζ(ω), be the restriction to
Ζ(ω) of the strictly monotone jT-measurable functional ψ(ί), t £ T,
constructed in Remark 1.3. By Proposition 4.2 the functional Φ(0,
t £ Ζ(ω), is weakly local and by Proposition 4.1 it is sufficient, since for
each ω the set Ζ(ω), which contains its infimum, is left directed. Thus we
can apply Theorems 3.1 and 3.2 to Φ(ί), t € Ζ(ω), from which it follows
that the set of minimum points of Φ(0 on Ζ(ω) is splitting and weakly
local. But since φ(ί) is strictly monotone, this set consists of the unique
point τ(ω), which proves the theorem.

4.5. We discuss the conditions of Theorem 4.2.
The set Ζ(ω) is splitting in each of the following cases: a) Z does not

depend on ω; b) Ζ(ω) is local; c) Ζ(ω) is weakly local and has the
property (4.1). The case b) is considered in Proposition 3.2, and c) in
Lemma 4.1.

We now list some conditions under which (for any ω) the functional
F(co, t), t £ Ζ(ω), is sufficient and the set Ζ(ω) contains its infimum.

Proposition 4.3. Let Mt(a, b) be regular zones, that is, given by the relation
(3.3). Let Ζ be a subset of Τ and F(t) a functional on Ζ satisfying the
following conditions:

1) for any t, s Ε Ζ there exist an infimum t f\ s £ Ζ and a supremum
t V s 6 Ζ (the partially ordered set Ζ is a lattice);

2) for all t, s € Ζ the inequality

(4.3) F(t Λ s) + F(t V s) < F(t) + F(s)

holds (the functional F is submodular, see [9]).
Then the functional F(t), t £ Z, is sufficient and the set Ζ of its minimum

points is closed under the operations Λ and V (Z is a sublattice of the
lattice Z). //, moreover, F is lower semicontinuous with respect to some
Hausdorff topology on Ζ, Ζ is compact, and all the sets {s £ Z:s ^ t}, t ε Ζ,
are closed, then Ζ is non-empty and contains its infimum.

Proof. We consider t £ Ζ such that (3.4) holds and we take any s £ Z.
Since t Λ « 6 { ( ' : < ' < ( } = Λ*ι('· 0 and t \j s € {<': < ' > « } = My.', t),
from (3.4) we have

(4.4) F(t) ^ F(t Λ «), F(t) < F(t V *),

and so

F(s) ^ F(t V *) + F(t /\s)- F(t) > F(t)

by (4.3) and (4.4). Consequently t is a minimum point of F, which means
that F is sufficient.
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Next, if u, υ Ε Z, then F(u) < F(u \J v) and F(v) < F(u /\ y), but, on the
other hand, F(u) + /"(i;) > F(u /\ v) + F(u V i')· Hence

/·(«) = F(v) = /-(u Λ *) = F(u V y)

and consequently u \J ν £ Z, u f\ ν £ Z, that is, Ζ is a. sublattice of Z.
If F is lower semicontinuous and Ζ is compact, then Ζ is compact and

non-empty. For any t Ε Ζ the set 4̂(<) = {s £ Z: s ^ 2} is compact, and for
any tx, t2, .... tk Ε Ζ the intersection

A(h) η A(t2) n · . . r u t o k )

is non-empty: it contains /, f\ t., /\ . . . /\ th, since Ζ is a sublattice of Z.
Consequently the intersection A - C)A(t), where t runs through Z, is also
non-empty. It is clear that A consists of only one element inf Z.

4.6. We note that the series of conditions we assumed previously to be
satisfied for all ω £ Ω can be replaced by similar conditions satisfied for
almost all ω. Thus, for example, Theorem 4.2 admits the following
modification.

Theorem 4.3. Let Ζ(ω) be α splitting random set and let F(a>, t), t Ε Ζ(ω),
be a weakly local functional. Suppose that there exists Q°£.f such that
Ρ(ΩΟ) = 0 and for each ω € Ω\Ω° the following conditions are satisfied:
a) the functional F(OJ, t) is sufficient in t Ε Ζ(ω); b) the set of all minimum
points o/F(co, t) on Ζ(ω) contains its infimum. If some τ(ω) Ε Τ coincides
with this infimum almost everywhere, then τ(ω) is a weakly local splitting
random set.

Proof. We fix an arbitrary ao£ Τ and we put Ζ'(ω) = {a0}, F'{u>, a0) = 0
for ω Ε Ω° and Ζ'(ω) = Ζ(ω), F'(co, t) = F(OJ, 0 for ω Ε Ω 1 Ξ Ω \ Ω Ο .
Since all σ-algebras considered on Ω contain ,Ι'(.·Γ), then Ζ'(ω) is a splitting
random set (see (3.2)) and for any a < b, i = 1, 2 we have .^f(a, b) =
= *4?(a, b) 3 Ω°. Ω1. Next, the set

W(<a)~-={(f,s): F(a>. / ) - F ' ( ω , «)<r, t, s^Mi(a, b) f] Ζ'(ω)}

(r Ε Λ1) coincides for ω Ε Ω 1 with the similar set for the functional
F(CJ, t), t Ε Ζ(ω), and for ω Ε Ω° it is either empty or consists of the
point (a0, a0). Hence {(ω, t, s): (t, s) ζ W(a>)} belongs to J l f (a, b) χ J X J,
that is, F'(co, f), / Ε Ζ'(ω), is weakly local. Hence this functional satisfies
all the conditions of Theorem 4.2, from which the required assertion follows.

Thus, the formulations "for all ω " and "for almost all ω " are practically
equivalent here. This is connected with the fact that in passing from the
first to the second it is sufficient to consider at most a countable family of
excluded sets. In the next section there appear, generally speaking,
uncountable families of sets of measure zero, which require more precise
handling.
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§5. Random change of variables

5.1. In this section we consider the transformations of Markov models
connected with splitting random elements. These transformations are
analogous to the random change of time, whose various versions are known
in the theory of random processes.

Let a Markov continuous stochastic model 21 = {Ai(a, b)} be given
(see § 1). Moreover, let us consider a partially ordered set (5, < ) and let a
random element τ^(ω) Ε Τ correspond to each s G S. We say that {ts},es is
a monotone family of random elements if for any a < b (a, b €Ξ S) the
inequality r a < rb holds (almost surely (a.s.)).

With each pair α(ω), β(ω) satisfying α(ω) < β(ω) a.s. we associate
σ-algebras _4((α, β) (t = l, 2, 3) by putting jt,(a, β) = Jtt(a\ β'), where
a' and β' are arbitrary random elements such that α'(ω) < β'(ω) for all ω
and a. = α.', β = β' a.s. It is clear that the definition of ^ ( α . β) does not
depend on the choice of variants a' and β' (see § 1.4).

Theorem 5.1. Let {TS}S€S be a monotone family of weakly local splitting
random elements. Then the a-algebras

(5.1) &i(a, b) = Λ,(τΒ, τ6) (i = 1, 2, 3, α < b)

define a Markov stochastic model 23 on the space (S, < ) . // the initial
model 21 is regular, then 33 is also regular.

5.2. The proof of Theorem 5.1 will be preceded by some lemmas.

Lemma 5.1. The following statements are equivalent:
(a) γ(ω) is a weakly local random element;
(b) for any D ζ .·? , a < b (i = 1, 2),

{ω: γ(ω) £ £> Π Α/,(ο, &)} = Γ Π {ω: γ(ω) € Λί,(β, 6 ) } £ ^ ,

vv/zere Γ z's some event from .4j(a, b).

Proof. Let the condition (b) be fulfilled, which is equivalent to the
requirement:

(5.2) ΔΛ » {ω: γ (ω) ζ D (] Μ-, (α, b)} ζ ^ ν Ι (α, 6).

We fix α0 G Γ and put γ ο(ω) = γ ( ω ) if γ(ω) G Μ((α, b) and 7ο(ω) = α0

otherwise. From (5.2) it follows that the map y0 is measurable with respect

to .4jy}(a. b), which means that its graph is measurable with respect to

^{ v )(o. b) χ ,f (see Remark 1.2). Therefore,

{(ω, t): ί = γ(ο.)€3#,(β. 6)> = <(ω, t): < = γο(ω), γ (ω) ζ Λ/,· (α, ft)} ζ

€ * ί ί τ ν 6) Χ.Γ,



Stochastic extremal problems and the strong Markov property of random fields 25

which gives (a). Conversely, from the fact that γ is weakly local and

Lemma 3.1 we deduce that

Δ/> = ρΓ0{(ω, t): ί=-.γ(ω)£Λ/{ (β, b) (] D}£^\y) (aj>).

Lemma 5.2. Let [α(ω), (3(ω)] be a random interval and τ(ω) a weakly local
random element such that γ(ω) £ [α(ω), β(ω)]. Then for any D £ 3Γ

(5.3) {ω: γ(ω) £/>} € Λι(«, β) Π Λ .(α, β)·

Proof. For any A: = 1, 2, ... the event {γ 6^} can be represented as a
countable union of the events of the form

{re/?. /*(«) = ρ, ^ ( β ) = ?} (ρ € /*(Γ), ? e gk{T)).

For any / = 1,2 each of them, in turn, admits a representation in the form

(5.4) Δ = {T e /> η # f ( ρ , ?)} η {/*(<*) = Ρ , ^(β) = ?},

since the relations / fc(a) = p, gfc(j3) = q imply that

(5.5) v 6 ία, β! Ξ f/», ?1 = Λ/((ρ, ί) .

Now by Lemma 5.1 and (5.5)

Δ = r η (γ e Λ/,(>.«-)} η {/*(«) = Ρ , ?*(β) = ?} =
= Γ η {/*(α> = Ρ, gk(fi) = ?}. r e ^ f ( p , ? ) ,

which means that Δ ζ .^.?(α, β). Consequently, {γ £/>} 6 ^ ? (α, β)
(Λ = 1,2, ...), therefore, {γ ζ D] ζ jlt{a, β) for any ι = 1, 2, as required.

Lemma 5.3. Le/ [α(ω), /3(ω)] UAZU? [α'(ω), β'(ω)] δβ /ινο random intervals,
where [α(ω), |3(ω)] C [α'(ω), β'(ω)] and α, /? are weakly local. Then
Jt.,{*. β) Ξ ^ i ( a ' , β') (ί = 1, 2).

Proof. It is enough to prove that ^f(a, β) s Λ?ία\ β')(Λ = 1, 2, ...). By
Lemma 5.2 α and j3 are measurable with respect to ΛΊ(α.', β') and we need
only show that

5 = {/ft(a) = />, gh(P) = q) Π re^?(«', β')

whenever Γ f Jjf/i, g).' We decompose Ξ into a countable union of events

(5.0) Γ Π {/*fa) = P, Λ(β) = ?} Π {/*(«')= Ρ', Λ(β') = ?'}.

where ρ' Gfk(T), q' e ^ ( Ό - We note that these events are non-empty only
when [p, q] C [p' ( ^ ' ] 5 since

But if [ρ, ςι] C [p'; qr'], then Γ 6 ^ j ( p , g) Ε Jft(p\ q). From this and
Lemma 5.2 we conclude that each of the events (5.6) belongs to ΛΊ (α , β').
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5.3. P>vof of Theorem 5.1. We note that «*3(γ, δ) s . ^ ( γ , δ) Π A2(y, δ)
for any random interval [7, δ] (see (1.3)). Hence it follows that the family
of σ-algebras (5.1) satisfies the condition l.B.

We take a < a < b < b'. Then τη · < Ta < xb < τν (a.s.),
and consequently there are random elements α', α, β, β', such that
α'(ω) < α(ω) < β(ω) < β'(ω) for all ω, and a = τα·, α = τα, β = τ 6 ,
β' = τ6- (a.s.). As we see from Lemma 5.1, each of the random elements
α', α, β, β is weakly local. Applying Lemma 5.3 to [α, β] and [α', β'] we
obtain

Λι(τ β , τ6) = ^ , ( α , β ) Ε Λ , ( α \ β') = ^,(τ«·, τ6.) ( ί = 1 . 2 ) .

From this and the equality <4»(τα, τ6) = Αι{τα, τ6) Π ̂ s ( t 0 , τ6) we get
condition l.A for the σ-algebras (5.2). This equality is a result of the
conditional independence

α, τ 6 ) | ̂ 3 ( τ α , τ 6 ) ,

which we prove now.
By Lemma 2.3 and the equality Λ,·(το, τ6) = Ai(a, β) (ί = 1. 2, 3) it is

enough to prove that any event of the form Λ = {/fe(a) —p. gh($) — q)
belongs to A\(j>, q).4i(p, q)· Since a and β are splitting, this follows from
the relation Λ = {α 6 Dx) Π {β €£Μ> where

Dl = {t 6 lp, ?1: /fc(0 = P], ^ , = {/ € IP. ?1

We assume now that the model 21 is regular. We need to prove the
equalities Ai(<x, β) = ^ ι ( β , β), Jtt{a, β) = <42(a, α). We verify the first
(the second can be verified similarly). It is sufficient to check that the event

(5.7) Δ = {α € D) Π {/*(<*) = α, ^(β) = 6} Π Γ

belongs to the σ-algebra Λ\φ, β) for any k = 1,2, ..., D £ 5", a < b, and
Γ 6 ^ι(α» &)· Namely, events of the form (5.7) and the random element β
generate A^{a, β), hence A\(a, β) Ξ ^ ί ( β , β) and consequently
Ji\(a, β) ε .?/ι(β, β)· The reverse inclusion holds, by Lemma 5.3. Since
Δ s {a 6 [a, i>]}= {a 6 M^a, b)}, we have

Δ = {α 6 D Π Mx(a, b)} (] {fk(a) = α} Π {^(β) = &} Π Γ.

Applying Lemma 5.1 to the random element α and to the set
D' = D Π {ί: fh(t) = α}, we find that there is a I\ 6 ώίι(α, b) for which

Δ = Tr Π {α 6 M1(a, b)) R {ί?*(β) = 6} Π Γ.

Here {£Λ(β) = ί ι } ε { α £ Μ^α, 6)} = {α < b) (see (3.3)), and consequently

Δ= υ tf6}nrnr*(l· w

since Γχ Π Γ 6 . ^ ( α , fc) = ^x(c, b) for any c < b.
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5.4. In the theorem given below we can see, in particular, the way of
constructing families of random elements {TS} described in Theorem 5.1.

Theorem 5.2. Let the relevant Markov model 91 be regular. For every sES,
suppose we are given a splitting random set *Ζ(ω) Q Τ and a weakly local
functional ^ ( ω , t), t Ε *Ζ(ω), and suppose that for any a, b, s Ε S {a < b)
and for almost all ω Ε Ω the following conditions are fulfilled:

a) a set W(CJ, a, b) Q Τ can be found such that it is a lattice {in the sense
of the partial ordering < given on T) and the sets αΖ(ω) and δ Ζ(ω) are
sublattices of it;

b) for any u Ε °Ζ(ω), υ Ε δ Ζ(ω) we have u f\ ν £ °Ζ(ω). u \f ν g bZ(iu),
and

(5.8) "F(m, u Λ u) + bF(<o, u V v)s^"F(io, u) + ''/>>, v),

where Λ and V are the lattice operations on W(OJ, a, b);
c) the set *Ζ(ω) of minimum points of Ψ(ω, t) on SZ(GJ) contains its

infimum inf "Ζ(ω). If, for any s Ε S and ω Ε Ω, TS(CO) is an element of Τ
such that TS(CO) = inf SZ(OJ) almost everywhere, then {TS}^S is a monotone
family of weakly local splitting random elements, and the a-algebras
^ ί ( τ α < Tb) (a < b, a, b Ε S, i = 1, 2, 3) give a regular Markov model on the
space (S, < ) .

We recall that in regular models the condition of being weakly local is
understood with respect to the zones Mt{a, b) defined in (3.3).

Proof of Theorem 5.2. We denote by Ω°(ο. b, s)£Jf* the set on which the
hypotheses a)-c) are not fulfilled. From a) and b) it follows that for s Ε S,
ω Ε Ω 1 Ξ Ω\Ω°(5, s, s) the set *Ζ(ω) is a lattice, and the functional Ψ(ω, t)
is submodular. Therefore, by Proposition 4.3, the functional Ψ{ω, t),
t Ε ^ ( ω ) , is sufficient in t for ω Ε Ω1. Together with c) this allows us to
use Theorem 4.3, from which we deduce that τχ(ω) is a weakly local
splitting random element.

Now suppose that a < b. Then for almost all ω

τ οΛτ 6£αΖ, τα\/
Λ rb)-°F(ra)^bF(xb)-bF(xa V

by b) and since τα Ε aZ, rb Ε bZ. Consequently, aF(xa Λ τ6) = aF(xa) and
το Λ Tb € aZ. Hence xb > τ α f\ xb > τα , since τα = inf "Z. Thus,
τ δ (ω) > τα(ω) for almost all ω, that is, we have proved that the family {τ,}
is monotone.

§6. The strong Markov property of random fields on a Euclidean space

6.1. We say that an (ordinary) random field is given on the ^-dimensional
space Rd if to each χ Ε Rd there corresponds a random element ξχ(ω)
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(ω G Ω) of some measurable space Ex. We say that a generalized random
field is given on Rd (see, for example, [3], [5]) if to each infinitely
differentiable function φ with compact support, φ Ε CQ — Co(Rd), there
corresponds a random element ζφ(ω) of a normed linear space V, where

ioi+btt = αΐψ + blt (a-s·) f o r a 1 1 a, b ER\<p, ψ E. CQ, and ξφΑ -*• Ιφ in
probability whenever ψΗ -*• φ in CQ.

Let £ be a random field (ordinary or generalized) and u C Rd

 a n open set.
We denote by gu the σ-algebra a{lx, χ ζ u} if £ = %x, χ € Rd, is an ordinary
field or the σ-algebra a{\v, supp φ s u} if ξ = ξφ, ψ G CJJ", is a generalized
field. Ο For any closed t Q Rd we put

(6.1) £Π= η g i ( e ) f

ε>0

where t(t) is the e-neighbourhood of t. Each σ-algebra .f' describes the
"realization of the field" on the corresponding closed set t (including its
infinitesimal neighbourhood).

When considering random fields we will always assume that the following
requirement is fulfilled:

(6.2) $*d = JF,

that is, the σ-algebra of all events is generated (mod 0) by the field £.

6.2. Everywhere in the sequel we denote by 7' = T(Rd) the class of all
compact sets t Q Rd that coincide with the closures of their interiors. We
assume that Φ € Τ. We recall that sets from the class Τ are called compact
domains (following the terminology adopted, for instance, in [3] and [27]
(vol. I, §8.VIII)) or, for brevity, simply domains.

We denote by 3~ the σ-algebra of subsets of Τ generated by the class of
sets of the form {t £ T: t S u}, where u runs through all open subsets of Rd.
Random elements of the measurable space (7\ 3") will be called random
domains.

6.3. We say that a random field % is Markov with respect to the domain

t e Τ if for any a, b G T, a C t C b, the σ-algebras JFb and JF° are

conditionally independent with respect to .97ar>b. (As everywhere in this
paper, the symbol "a denotes cl ac, the closure of the complement of a.)
A field % is called Markov if this property holds for all domains t G T.

Various classes of random fields which are Markov in the above sense
were considered in [3], [8], [23], [24], [28], [29], and other papers.
Some equivalent formulations of the Markov property were used there,
which we present in §6.11.

(1)We recall that any σ-algebra of the form σ {·} (and all σ-subalgebras of SF considered
here) contains, by definition, all events of zero probability, and the probability space
{U,^, P) is complete, see §1.
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6.4. For t ET and ε > 0 we denote by t [ε] the closure of the ε-neighbourhood
ί(ε) of t. We also put

and 11—ε] = cl t(—e), where ρ is the Euclidean distance. With each a C b,
a, b £ T, we associate the σ-algebras

(6.3) Λ4(α, &) = ^ 6 , Λ ( ί , ί ) = / , ^ ( α , 6) = / Γ η ι .

Let α and β be two random domains such that α(ω) £ β(ω). For any
/ = 1, 2, 3 we consider the σ-algebra .^(α, β) equal to the intersection over
all ε > 0 of the σ-algebras Jt^\a, β) generated by α, β, and the class of
events of the form(1)

(6.4) {α [-ε] £= α) Π {β fe] Ξ2 b} {] Γ, Γ 6 Jl^a, b), a. b ζ Τ, α ε 6.

We call a field £ strongly Markov with respect to the random domain τ if
the σ-algebras Ji^a, β) and ^ 2 ( α , β) are conditionally independent with
respect to c43(a, β) for all random domains α and β such that α(ω) Q τ(ω) £
C j3(co) and α(ω) = /(τ(ω)), β(ω) = #(τ(ω)), where f,g:T^Taxe measurable
maps.

The σ-algebras Jt^a, β), ^ 2 ( α , β), and ^ 3 (α, β) that we have introduced
describe the behaviour of the field on β, a, and α (Ί β respectively (including
"infinitesimal neighbourhoods" of these sets) and contain, moreover,
information about α and |3. The above definition of these σ-algebras and the
definitions of the strong Markov property related to them is the most
convenient formalization for our purposes of the notions presented in part 3
of the introduction.

6.5. A random domain τ will be called splitting if for any α <Ξ b, a, b S T,
and D ζ Jf, D Ξ {t: a £ / s b], the event {τ ζ D} can be represented in the
form Γ! Π Γ2, where Γ, £ Λι(«.*)(» = 1. 2).

Theorem 6.1. For a Markov field % to be strongly Markov with respect to a
random domain τ it is necessary and sufficient that the random domain τ is
splitting.

Now from a given field ξ we construct a stochastic model ?Ι(ξ), and
Theorem 6.1 will follow from the corresponding general result for Markov
models, namely from Theorem 2.1.

In the space Τ of domains we introduce a partial ordering by putting
a < b if and only if a C b, and we define the σ-algebras Ai{a, b) (/ = 1, 2. 3.
a < b) by (6.3), assuming moreover that <£>Qb, bET, and .<F0= o{Jn(.¥)},

jr = . * (see (6.2)). It is clear that 2[(ξ) = {jtt{a, b)}is a regular stochastic
model and that this model is Markov if and only if the field % is Markov.

fact that {α[—ε] ψ a} and {β[ε] = ί>} are actually events will be rigorously
proved in §6.8 (see Lemma 6.2).
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A cube of order k (k = 1,2, ...) is a set of the form

(η, +1)2-*},

where n} (/ = 1, 2, ..., d) are integers. We denote by fk(t) (respectively,
gk(t)) the union of the cubes of order k contained in int t (respectively,
intersecting t).

Theorem 6.2. The family of maps $£ — {fh, gh} that we have constructed
is a skeleton of the partially ordered measurable space of domains (T, $, ^ ) .
The model 21(ξ) is continuous with respect to 3£. The field % is strongly
Markov with respect to the random domain τ if and only if the model 2Γ(ξ)
is strongly Markov with respect to τ.

6.6. We put aside for a while the proof of Theorem 6.2, and derive
Theorem 6.1 from it now.

Proof of Theorem 6.1. Directly from the definitions it follows that τ is a
splitting random domain if and only if τ is a splitting random element in
2f(£). Therefore, to obtain Theorem 6.1 as a consequence of Theorems 2.1
and 6.2 we need only note that condition 2.A is always satisfied for $(£).

Indeed, fk(t) C int t C gk(t) for all t € T, hence the open sets ι; = Rd\fk(t)
and w — int gk(t) give as a union the whole of Rd. Consequently, any
function φ Ε CQ can be represented in the form φ = ipw+<pv, where
supp ψν C v and supp φ» C w. Hence ξφ = l^ + | Φ | Γ (a.s.), which means

that the random variable ζφ is measurable with respect to ψ \J &w (we
recall that / c g ' y £ t t ). Comparing this with (6.2), we find that

v ^ f f c ( l ) = ^ ,
which is equivalent to condition 2.A for St(l).

6.7. Before proving Theorem 6.2 we establish some lemmas.

Lemma 6.1. The family Si = {/h, gk} described in §6.5 has the following
property:

6.A. For any t Ε Τ, ε > 0 there is a k such that fk(t) Ξ t [—ε], t lei = gh(t),
and for any k there is an ε' > 0 s«c/z //ifli ί Ι—ε] = /A (<), ί Ιε] Ξ gh (<)/°'-

0<ε<ε'.

Proof. The first two inclusions hold for k such that the diameter of the
cube of order fc is less than ε. The last two inclusions hold for arjy
sufficiently small ε ;> 0, since fk(t) C int t and t C int gfc(f).

6.8. For the rest of the paper it will be convenient to have some equivalent
definitions of the σ-algebra 5". We denote by Jx, . . ., KT10 the σ-algebras
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of subsets of Τ generated by the following classes of sets and maps:

( 5 Ί ) {t 6 T: t 3 χ), χ e Rd\ (.r2) {t£T:tc=s},se T;
(,f3) {t £ T: t => s}, s £ T; (;T4) {teT: t [}s Φ0}, s £ T;
(3Ί) t ~~ P(X, 0. χ 6 Rd\ (fe) t _ . tH(s, 0. * € Γ Μ 0 } ;
{J,) t ~fh(t) (* = 1, 2, . . .): (·*"8) t~gh(t) (k = 1, 2, . . .);
(JT9) / M. t [e j "(Λ = 1 , 2 , . . .): (,^10) / — / 1—ej (k = 1. 2. . . .)·

where f Λ is an arbitrary (but fixed) sequence of positive numbers tending to
zero, fk and gk are the maps defined in §6.5, and

(6.5) t H ( 7 , s) = inf {f > 0: / s s(e), s = /(ε)}, ί , ί 6

is t h e Hausdorf f m e t r i c / 1 * F o r each / = 1,2 , ..., 10 we have t h e fol lowing
result .

Lemma 6.2(y). J j = &.

Proof (compare [25] , [30]). Let B(x, r) (respectively, B[x, r\) be ih" open
(respectively, closed) ball with radius r and centre at x. The fact that
,Ψι Ξ .^follows from the following assertions:

(f/1) {t$x}= U {ts=Rd^B[x, I/ft]};

(U5) {p(x,t)>r} = {t<=R"\B[x,r]}, r > 0 ;

(f/6) {i: r H ( < .

where {yh} is dense in s;
(£/7) if α e / f c(D, then /fc(i) = α if and only if / D a[ l/m] for some

m = 1, 2, ... and ί 5 b\\\m\ for any m and any cube 6 of order k not
contained in a (see (t/3));

(C/8) if b Ε ̂ (2"), then gfe(0 = b if and only if f C int Z? and /
intersects all cubes of order k forming b;

(U9) {t: f [ e ] c u } = U (]{t: p(xm,t)>e+i/k},
k m

where {xm} is a dense subset of the complement of the open set u (see (ί/5)):

(£710) {t: <[-e]£=u}= G fl Π {': # [ *
l £ G ( , u ) fc=lwhere G(w, w) is the set of rational points χ ε Rd such that 5(.v. 1//;;) £ //

(see (i/3)).

(1)We put ρ(ϊ, 0) = tH(«, 0) -= + « for χ ί R<>, s 6 T\{0}.
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Next, we note that 3Γ is generated by functions t •-»• p(x, t), χ £ Rd,
since for open u

{t: i £ u } = U Π {*: p(* m , 0>l/fc},
h m

where {xm} is dense in Rd\u. To prove Lemma 6.2(/) it is sufficient to
verify now that functions t <-*• p(x, t), χ € Rd, are measurable with respect
to ( / = 1 , 2 , ..., 10). For / = 6 this follows from the continuity of
p(x, t), t ζ Γ \ { 0 } , in the metric rH, and for the remaining/ from the
relations

{p (/, x) < r) =-- U {«9 Vm), {ym) = Β(*. r) s cl {yM};

{ρ(ί,

{P(f, x)<r}=u U{
m Λ

{ρ(ί, x)<r}=-{i ί)Β[χ, τ]φ0);

ρ (χ, ί) = inf ρ (χ, /,. (i)) = supp(x, gk(t))=-- sup ρ (χ, ί [F, , ] )- inf ρ (χ. /[ —
h * h h

Remark 6.1. From the equality J = ,~6 it follows that the restriction of
jf~to T \ { 0 } coincides with the Borel σ-algebra on 7 '\{0} associated with
the metric t H .

6.9. Proof of Theorem 6.2. We verify the conditions (I)-(IV) formulated
in §1, observing first that (T, J', ^ ) is a partially ordered measurable space,
since by Lemma 6.2(1)

{(*, s): t<£s}= [}\{(t, s): xh€t}M(i'S): *kis}]£S Xf-
k

where t, s G Τ and {xk} is a countable set dense in Rd.
We have fk(t) C / C gk(t). Moreover, if s C gk(t) for all k, then by

Lemma 6.1 5 C t. Similarly, if Τ 3 s Ώ. fk(t) for all k, then s Ώ. int t, hence
$ 2 / . Thus (II) has been established.

We note now that fk(t) is the union of the cubes of order k wholly
contained in / fc+1(0, and gk(t) is the union of the cubes of order k that
contain at least one of the cubes forming g),+i(t). Consequently,
S'Ux) Ε S(fk+i), &(gh) & ^teft+i)· Hence from Lemmas 6.2(7) and 6.2(8)
we get (III).

It is clear that (IV) is satisfied and so Μ = {fh, £*} is a skeleton for
(T, S~, < ) . The continuity of $[(£) with respect to <S€ (see l.C) follows
from Lemma 6.1 and the relations

&* = Π ?m, H^2] = ΐ[ε], t£T.
e>0
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To prove the last assertion of Theorem 6.2 it is sufficient merely to verify
that the definition of σ-algebras c£,(a, β) given in §6.4 for random domains
a C β is equivalent to the corresponding definition given in § 1.4 in the
framework of general stochastic models.

Lemma 6.3. For any α(ω) £ β(ω) and i = 1, 2, 3 the σ-algebra jit(a, β)
defined in § 1.4 coincides with the intersection over all ε > 0 of the
σ-algebras Α{Ρ(α., β) generated by α, β, and the events

{a l-e) E U c p [ε]} f) Γ, Γ 6 Jti(a, b).

Proof. We fix ε > 0 and (omitting the index / = 1, 2, 3) we show that if
Δ 6 ,Sh{a, β) = Ah for all k, then Δ 6 Au\a, β ) = ^ < ε ) . We put

λ=[α, β]={/: c t E / ε Ρ ) , λ ( ε ) - [ α [ - ε ] . β [ε]], λ" = [jh (α). gh (β)]

and denote by Lk the (countable) set of values of Xk. Then by 6.A

Δ = 0 U Δ*.', Δ*.' = (Kh gr >.">, χ" = /} η Δ,
* = i ieLk

and so it is sufficient to show that Δ*.' £ ^ ( ε ) for all Λ £ c4h. In turn, it is
sufficient to establish this for Δ of the form (1.3), but for such Δ if
Δ'1-' φ 0, then

Δ * . ' - | { λ ( ε ) 3 [ α , b\) Γ) Γ] Π {λ Λ £λ ( ρ \ λ*^[α, &|}€^u >

since the maps < >-*• t If 1 and / >-»• / I —el are measurable (see Lemma 6.2).
Now suppose that Δ £ c4(e) for all ε > 0. We take any k = 1,2,... and

claim that Δ £ jih. Because of 6.A,

Δ - 5 U Δη,,, Δη >, = {λ"/") = λ*, λ* -= 1} Π Δ,
η = 1 /6ί.Λ

and consequently it is sufficient to show that Δ Π ι / 6 ,4h for all Δ ζ ,

In turn, it is sufficient to prove this for Δ of the form

"> =[α, b]} Π Γ. Γζ^(ο,&)

(see (6.4)), and if Δ has this form, then for ΔΠ ι ί φ 0

Δπ>ι={λ<·/η> = λ\ λ(·/») = [α, b]\ η ΐ{λ*=/} η n e ^ f c .

since [a, b] Q I = [c, d], and consequently

Γ 6 A(a, b) <= .^(c, rf).

Lemma 6.3 and Theorem 6.2 are proved.

6.10. Remark 6.2. The formulation and proof of Lemma 6.3 can be
carried over directly to the general case of a continuous stochastic model
{.4i(a, b)} with an arbitrary partially ordered measurable space (Τ, 3Γ, ^ ) .
on which besides a skeleton <$? = {/,,, gh} we have a family of measurable
maps t >-*• t \—ε] and t >-+ t [ε], ε > 0, satisfying condition 6.A.
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Remark 6.3. As is clear from Lemma 6.3 and the preceding remark, the
particular form of the maps/ f c and gk defined in §6.5 is not important in
the proof of Theorem 6.2. It is essential only that these maps form a
skeleton of the space of domains and that condition 6.A is fulfilled.
However, the construction of fk, gk given in §6.5 is apparently the most
convenient.

Remark 6.4. The results presented here can easily be carried over to the
case when ξ is not defined on the whole of Rd but, say, on some open set
homeomorphic to Rd. In this case, to define the maps/ f c, gk, instead of
cubes of order k we have to take their images under the corresponding
homeomorphism. Other generalizations are also possible, employing the
technique developed in the first part of this paper. (Compare [3], where
fields on metric spaces were considered.)

6.11. We conclude this section with some equivalent formulations of the
Markov property of a field (see [3], [8], [23], [24], [28], [29]).

Proposition 6.1. The following conditions are equivalent:

{.Mi) &* 11 JF 6 | ^ F ~ n b for any a,b£T, a s= b;

(M2) for any open bounded set u and ε > 0 we have :<•]"• u ψ | SMe\
where ν = Rd\cl u and w = bu;

(M3) ψ n ψ I gpn<!for any open sets ρ and q such that ρ U q = Rd and
ρ is bounded;

(Λί4) .?' H Jf81 Jftf]s for any closed sets t and s such that t U s = Rd

and t is bounded.

Proof. Let {M\) hold. To establish (M2) we apply {Mx) to a = c\(u\w[5]),
b = u U νν[δ], where δ = ε — e/m {m = 2, 3, ...). We obtain

.V" M s · ι .r t 0 [ e - e / n i ] .
because H = (Rd\u) U w[8] 2 υ, b Ώ. u, and Ί η b = w[6]. Hence (M2)
follows, since

To deduce (Λί3) from (Λ/2) we put

qe = Rd\q, u = (<7c)(x), y = / ? d \ c l u , w(e) = (0u)(e),

taking κ > 0 and ε > 0 such that cl u Ξ ρ, W(B) S ρ Π q- Applying the

relation 4?'lU#t = gS l \/ «?'·, which is valid for any open sets sx, s2, and

general properties of conditionally independent σ-algebras (see, for example,

[3], Ch. 2, §1), we obtain from (M2):
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where 3U can be replaced by Τ V $ρΠ9 = $p and dv by ψ \j ψ·Λ = ψ,
which gives (Λί3).

To deduce (M4) from (M3) it is enough to proceed to the limit as
ε = k'1 -*- 0(k = 1, 2, ...) in the relation

which is valid by (Λ/3).

Finally, (Mj) follows from (M4) when t — b, s =~a.

We note that for generalized fields the conditions (A/i)-(M4) lead to a

concept of Markov property different from the one in [ 6 ] , [ 7 ] , [31] (for

the corresponding discussion see, for example, [ 3 ] , [8]) .

§7. Constructions of splitting domains

7.1. In the previous section it was shown that the study of the strong
Markov property and splitting random domains for a field % on Rd can be
realized in the framework of the stochastic model ?Ι(ξ). This gives the
possibility of applying the general results of §4, particularly Theorem 4.2,
to the construction of splitting random domains. However, to apply
Theorem 4.2 directly we need to verify that the space of domains (T,S)
satisfies condition 3.A. This fact follows from assertion (a) of the following
lemma.

Lemma 7.1. (a) The space (T, ,f) of domains is standard, (b) There is a
sequence of measurable maps yf (/ = 1, 2, ...) from (T. 5~) to Rd, equipped
with the Borel σ-algebra @(Rd), such that dt = cl {yj(t)} for any t ξ_ Γ\{0}.

Proof. We consider the space Κ of all non-empty compact subsets of Rd

with the Hausdorff metric (6.5). It is known that Κ is a complete separable
space (see, for example, [32]) and that there is a sequence of measurable
maps ivy. (A", SS(K)) -»- (Rd, %{Rd)) (/ = 1, 2, ...) such that dk = cl {wj(k)}
for every k e K. The last result follows, for example, from Theorem 4.2 of
[25], which can be applied after verifying that Ku == {k: dk f] u φ 0} 6 %(K)
for any open ball u Q Rd. But this is true, since

Ku = { i : i n « # 0}\{*: k Ξ u},

where the first set is open and the second is closed in K.
Next, we note that the set K° = {k £ K: int k φ 0} coincides with the

union of closed sets {k £ K: k Ξ UI} (I — 1, 2, . . .), where ul are balls
with rational centres and radii, and consequently belong to &(K). Let η·;·(Α)
be the centre of the ball um with the smallest number m > j , contained in
k G K°. Then

Π {k£K°: inf | w, (k)-w- (k) \ = O}£.<0 (A'),
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hence (a) follows by Remark 6.1. To construct yf(t) it is enough to fix
q G Rd and put yf(t) = Wj(t) for ι ζ 7 \ { 0 } and y}(0) = q.

7.2. Thus. Theorem 4.2 is valid in the model 3(1). We establish a sufficiently
general corollary of it.

Let ζ be a random field on Rd (ordinary or generalized), Ζ(ω) a class of
non-empty domains given for each ω G Ω, and F(a>, t) a real functional
defined for all ω G Ω and t G Ζ(ω). As always, we assume that the space Τ
of domains is partially ordered by the inclusion relation Q.

Theorem 7.1. Let the functional F(GO, t), t G Ζ(ω) be local. Let the
following conditions hold for each ω G Ω:

1) the set Ζ(ω) of domains is a lattice and the functional F(co, t), t G Ζ(ω),
is submodular, that is, F((U, ί V s) + F(®, t f\ s) <! /"(ω, f) + /'(ω, s).
r, 5 G Ζ(ω), w/zere V and Λ are /7ze lattice operations in Ζ(ω);

2) /Tze set of the domains t G Ζ(ω) ί/ζαί minimize F(GJ, t) on Ζ(ω) /s «on-
empty and contains the (unique) domain τ(ω) that is smallest with respect
to inclusion.

Then τ(ω) is a weakly local splitting random domain.

We note that since the model 3(ξ) is regular, in accordance with the
convention of §3.3 the condition of being local in this model is understood
with respect to regular zones (3.3). Consequently, the property of the
functional F(oo, t), t G Ζ(ω), of being local means here that for any
a, b G T, a ^ b, and r G (—°°, +<») the following relations are satisfied:

{(ω, t, s): t, s 6 Ζ(ω), t, s s b, F(ti>, t) — F(w, s)^r} ζ
6 ΑΛ(μ, b) χ £Γ χ j ,

{(ω, t, s): t, s 6 Ζ(ω), t, s => a, F(u, t) — F(<a, s ) < r} £
6 ^ 2 ( a , 6) X JT χ j r f

where ^,(a, fe) are the σ-algebras generated by ξ (see (6.3)).

Proof of Theorem 7.1. Since the functional F(co, t), t G Ζ(ω), is local, its
domain Ζ(ω) is also local—see §3.4. Consequently, by Proposition 3.2 the
random set Ζ(ω) is splitting. Next, since the zones Mt(a, b) are regular,
from condition 1) and Proposition 4.3 it follows that the functional F(o>, t),
t G Ζ(ω), is sufficient. Thus, the assertion of Theorem 7.1 follows from
Theorem 4.2.

Proposition 7.1. For the conditions of Theorem 7.1 to be satisfied it is
sufficient that the following requirements are fulfilled:

(a) the set Ζ(ω) does not depend on ω [Ζ(ω) = Ζ ] , it is compact in the
Hausdorff metric, and it is a lattice;

(b) the functional F(co, t) is continuous in t G Ζ with respect to the
Hausdorff metric and is submodular;

(c) for any t, s G Z, t C s, the random variable F(oo, O"~F(co, s) is
measurable with respect to Jl3(t, s).
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Proof. Condition 2) follows from Proposition 4.3, so we need only verify
that Ρ(ω, t), t £ Ζ(ω), is local. We fix α <Ξ b, a, b £ t, and put
Mx = {t: i s b}, M2 = {t: i s a}. We note first that for any / = 1,2

(7.1) F(G), /) — /"(ω, s) ζ Ai(a, b)

whenever t, s £ Λί,· Π Ζ. For example, if / = 2, then

< V * 6 Λ/< Π 2 , « s < V « . s s ' V s .
F(/) - /*(*) = [/"(0 - F ( i V >)) + \F(t V *) - ^(*)J €

6 *«,,(*, < V s ) V ^ s ( 5 . / V s ) £ Λ«(α. fr).

From (7.1) and the fact that the function F(td, t) — F(io, s) is continuous in
(t, s) on the metric compact set (Ζ η Mt) χ (Ζ Γ) Μ;) we deduce that this
function is measurable in (ω, t, s) with respect to the product of jft(

a< 6)
and the Borel σ-algebra of the above compact set. Taking account of the
fact that Ζ f] Mi £ .T and the Borel subsets of Ζ Π Mt coincide with
."7-measurable subsets (see Remark 6.1), we see t h a t / i s local, as required.

Remark 7.1. One of the simplest cases when the conditions (a)-(c) given in
Proposition 7.1 can be directly verified is the following: (i) Ζ is a compact
(in the Hausdorff metric xH) class of domains that is closed under finite
unions and intersections and is such that mes (tAs) ^ C- xH(t, s), t, s G Z,
where mes(·) is the Lebesgue measure and C is some constant; (ii) F is
defined by F(M, t) = Ι ην(ω)άτ, where ηχ(ω) is a random function,

t

continuous in χ £ Rd, such that for all t £ Τ, χ £ t the random variable ηχ

is measurable with respect to JF* (.F' are the σ-algebras connected with the
field £, see §6.1). An example of a set Ζ satisfying condition (i) is given in
§8.1.

§8. Survey of examples and applications

8.1. In this section we present a survey of analytic examples illustrating the
results on splitting random domains obtained above. We also consider the
applications of the random change of variables described in § 5 to the
construction of Markov models on the space of contours.

Limitations on the length of this paper do not allow us to analyse the
examples in detail, with full proofs. For this purpose we would need a
range of tools broader than the one employed here, namely: some techniques
connected with Hausdorff measures, estimates of ε-entropy of sets in
function spaces, some facts concerning random fields (percolation theorems),
limit theorems of probability theory, and others. Therefore, the detailed
presentation of the results of this section and some of their generalizations
will be given separately in forthcoming papers.

We begin with examples related to one of the most important and well
studied Markov fields—a free field [7, 33-35].
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Let ζφ, φ G CQ(R2), be a free field on the plane, that is, a stationary
Gaussian random function with zero mean and spectral density (1 + χ\+χΙ)~\
xv x2 G R2. The random function %φ can be extended in a canonical way
to the Sobolev space ^?_1(/i2) of generalized functions with moderate growth
such that

' ι φ(χΛ, xt) | 2 , , .

where ~ denotes the Fourier transform (see [34], [35]).
The space α¥_ι(Λ2) contains the indicator functions χ, of all domains

t G T(R2), so for all t G T(R2) the random variable Ξ,(ω) = lXt (ω) (ω ζ Ω)
is well defined (up to equivalence).

Let £_ and X + be two classes of continuous functions a(r), r £ [0, 1],
such that a(r) > 0 for r G (0, 1). Let the following conditions be fulfilled:

(a) Each of the classes 3E_, £ + is closed with respect to uniform convergence
and the operations of taking the maximum and the minimum of two
functions.

(β) All functions a( ·) 6 £_ U £ + a r e bounded by some constant Μ and
satisfy a Lipschitz condition with constant M.

To each pair of functions / = (/_,/+) ς £_ χ ϊ + there corresponds a
domain

-/-('·)<«</+('•). re[o.i]}.

We denote the class of all such domains by Ζ = Z(£_, ϊ+).

Theorem 8.1. 1) 77ie sei Ζ of domains is compact in the Hausdorff metric
and is a lattice with t /\ s = t (]s and t V s = ί U s. 2) 77zere w α
continuous (with respect to the Hausdorff metric) modification F(OJ, 0 of
the functional Ξ^ω), t G Z, which for all ω G Ω satisfies the following
condition:

/"(ω, ί V *) + *"(«>, <Λ«) = *(ω, «) + /"(ω, *), ί, β € 2.

3) For eac/i ω G Ω i/?e functional F(co, /), ί G Ζ, attains its minimum F(w).

Ζ(ω) = { ίζΖ: /"(ω, ί) = ί;(ω)}

contains the smallest (with respect to inclusion) domain τ(ω). The domain
τ(ω) is splitting.

Remark 8.1. Employing the theorem on uniqueness of the minimum of a
Gaussian random function (see [36]), one can show that Ζ(ω) = {τ(ω)} for
almost all ω G Ω.

The construction of a functional F(OJ, t) described in 2) is based on the
results of [37], [38] on the continuity of Gaussian random functions on a
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metric space. In this an essential role is played by the estimate

where Ν(ε, Ζ) is the smallest number of elements in an ε-net of Z. The
inequality (8.1) can be derived from formulae on the ε-entropy of classes of
functions satisfying a Lipschitz condition [39]. The splitting property of τ
can be established by means of Theorem 7.1 and Proposition 7.1.

8.2. It is of interest to study limit distributions connected with extremal
random domains. In general, this problem is very difficult. Here we show
one case in which it can be solved.

We consider the above construction and apply it to the classes 3L and£ + ,
where 3E_ consists of one function /_ = c, and £ + consists of constant
functions f+=a,aE[Q,A] (the numbers c > 0 and A > 0 are assumed to
be given). The domains that belong to the class Ζ = Z(3L, i+)are rectangles
of the form [0, 1 ] χ [~c, a],ae [0,A).

Let τΛ = [0, 1] χ [~c, σΑ(ω)] be the smallest (with respect to inclusion)
rectangle among those that minimize F(co, t) on Z, where F(GJ, t) was
constructed in Theorem 8.1. By this theorem τΛ is a splitting random
domain for the free field. The result given below allows us to obtain
approximate formulae for distributions of such domains for large values of A.

Theorem 8.2. For any r G (0, 1)

lim Ρ {σΑ/Α < r) = — arcsin Y~r.
A-*oo π

Thus, the distributions of the random variables aA/A converge weakly to
the arcsin law. In the proof of Theorem 8.2 we use Theorem 12.1 from [40].

8.3. We consider one more example of the construction of splitting random
domains, this time related to ordinary random fields.

Let / be the set of all non-empty domains t C R2 whose boundaries are
contours (that is, they are homeomorphic to a circle) and have finite length

Let ξ χ (ω) (χ € R2, ω £ Ω) be a real random function with continuous
realizations. We fix t0 e /, c Ε R1 and consider the set

and the class of domains

1Γ(ω) = {t 6 J: dt s q(u>), t = /„}.

We assume that W(CU) Φ φ, ω e Ω.

Theorem 8.3. In the class W(CJ) there are domains t with minimal perimeter
l(dt). Among the domains with minimal perimeter there is a (unique)
domain τ(ω) that is smallest with respect to inclusion. It is splitting.
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The boundary δτ(ω) of τ(ω) gives a solution to the following problem:
find the shortest path around the domain tQ on the set /?2\int t0 not
intersecting {χ: ξΛ <; c}

Fig. 1

tAs
tVS

Fig. 2

(the shortest path around the "island" /0

 o n t n e "sea" Λ2\ίηΐ t0 outside the
"shallows" {χ: ξχ(ω) < c}, see Fig. 1).

The proof of Theorem 8.3 is based on Theorem 7.1 and the following
result.

Proposition 8.1. For each ω €Ξ Ω the set W(co) is a lattice, where if
t, s £ W(OU), then t f\ s = cl u, and t \f s = vc(= i ? 2 \r) , where u is the
connected component of int t Π int s containing int t0, and ν is the
unbounded connected component of f Π sc (see Fig. 2). The functional
l(dt) is submodular on W(ui).

Despite the fact that this assertion is "geometrically obvious", to prove it
rigorously one has to use some subtle results on the topology of the plane
([27], vol. 2, §61). Moreover, during the proof it is necessary to extend
the functional /(·) in a suitable way to a class of sets broader than the class
of contours. To this end we consider the Hausdorff measure of order 1 on
Borel subsets of R2 and use a number of properties of it [41 ], [42].

8.4. We distinguish two important special classes of splitting random
domains. Let ξ be a field on Rd and . F ' , t GT = T(Rd), the σ-algebras
defined by (6.1).

Theorem 8.4. If a random domain τ satisfies one of the conditions:

(8.2) {xsiJe.F*, t£T,

(8.3) {τ=2ί}€·Γ', t£T,

then it is splitting.
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Thus, if (8.2) or (8.3) is fulfilled and the given field % is Markov, then it
has the strong Markov property with respect to τ (compare [3], [ 10], [11]).

We give a simple proof of Theorem 8.4. Let (8.2) hold. To prove the
splitting property it is sufficient to show that

(8.4) {τζΰ, tc^.f

In turn, it is sufficient to prove (8.4) for sets D of the form

(8.5) D = {t (ET: t !=ic}, c ζ Τ,

since by Lemma 6.2(2) such sets generate 5'. But if D has the form (8.5),
then by (8.2)

where

e = cl(int c f] int b) £ T.

We assume now that (8.3) holds. Then D£.f can be represented in the
form

(8.6) Δ = { τ 6 # , a c r x s f c } = {τ s 6} f]T,

where Γ is some event from jfb. For it is sufficient to prove (8.6) for sets
D of the form {t: t 3 c), c £ T, which, by Lemma 6.2(3), generate 5'. But
for such D if Δ Φ φ we have c C b, hence

Δ = {T = C} Π{τ = α} f] {τ Ξ b},

where the first two events belong to Jfb, since a Qb and c ζ, b. It remains
to note that

5

where {VJ} is the set of closed balls with rational centres and radii contained

in Rd\b. Thus, Δ = Γ Π Γ', where Γ 6 -F 6 and Γ' ζ 3*, as required.

8.5. We will not study domains of the form (8.2) and (8.3) in detail here;
we give only some examples.

Let ηχ(ω) be a real-valued field continuous in χ G Rd. Let ηχ(ω) be
adapted to the field ξ, that is, ηχ is measurable with respect to JF' for all
t Ε Τ, χ G t. We assume that

λ(ω) = {χ: Τ[χ{(ύ) > 0} φ 0 , ω £ Ω·

Theorem 8.5. The set τ(ω) = cl λ(ω) has the property (8.3). // τ(ω) is
bounded for each ω, then it is a splitting random domain.

Let ξχ(ω), χ Ε Rd, be another field with continuous realizations, adapted
to £. We fix a point x0 Ε Rd and a real number q > 0. We also assume that
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for all ω

x0 e λ(ω), ζ,(ω) > 0.

We say that a point χ G λ(ω) belongs to the set λ ? (ω) if there is a
(continuous) rectifiable curve γ : / = [0, 1 ] -»· Rd such that γ(0) = x0,
7(1) = x, y(r) S λ(ω) for r G /, and

j ζ, (ω)/(<**)< g,
ν

where /(dx) is the element of length. The set λ , ίω) is non-empty and open;
we denote its closure by τ,(ω). If, say, ζχ(ω) > κ > 0, then τ,(ω) is
bounded and consequently τ ς (ω) G Τ.

Let us suppose that the field £ χ(ω), χ G λ(ω), describes a non-homogenous
medium and that ^ ( ω ) " 1 characterizes the local rate of propagation of some
wave process at the point χ G λ(ω). Then according to the Huyghens
principle the surface 3τ^(ω) gives the position at time q > 0 of the front of
the wave propagated in λ(ω) from x0.

Theorem 8.6. The set τ ? (ω) satisfies the condition (8.2), and if rq(u>) is
bounded, then it is a splitting random domain.

Remark 8.2. If ξχ = 0, then τ,(ω) is the closure of the connected component
of an open set λ(ω) that contains x 0 (compare [3] , [ 10], [11]).

The idea of the proof of Theorem 8.6 is close to that of Theorem 2 in [11].

8.6. We demonstrate one application of the random change of variables
described in §5. Let T2 be the set of all contours t C R2 that can be
represented as a union of a certain number of edges of the two-dimensional
integer lattice Z2. If t G T2, we denote by I(t) the (compact) domain
bounded by the contour /. We put t < s if I(t) C /(s).

As before, let (Ω, &, P) be a complete probability space. We assume
that to each χ G Z 2 there corresponds an automorphism θχ : Ω -> Ω of the
space (Ω, &, P) such that 6 I + I f = 6x-9y. We consider a family Ai(a, b)

(i = 1,2,3; a < b) of σ-subalgebras of & that form a stochastic model on
7\. We say that this model is stationary if

where a + χ is the contour obtained from a by displacement through a
vector χ. A random function £f(co) taking values in some measurable space Ex

for each t G T2 will be called stationary if Et+X = Et and Ιί+Χ(ω) = ξί(θχω)
(a.s.) for t G T2, χ G Z2.

Our goal is to show how by using Theorem 5.2 one can construct
sufficiently broad classes of stationary Markov random functions and
stationary Markov models on T2. They are of interest as natural generalizations
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of Gibbs fields on Z 2 and also in connection with the growing attention paid
by physicists to fields defined not on points of space but on some other
geometric objects (contours, loops, surfaces, "threads", and so on, see [16],
[17]).

The raw material for the constructions will be random fields on Z2. Thus,
the construction presented below can be regarded as a way of perturbing
fields defined on points, which leads to fields defined on contours.

Let 8χ(ω), χ G Ζ2, be a random function taking values in a standard
measurable space Ε such that

Ξχ+ι, (ω) = Eu (θχω), (χ, y ζ Ζ2, ω ζ Ω).

For υ Q R2 we denote by Ξ(,(ω) the configuration of values of Ξχ(ω) on
ν Π Ζ2. We consider the regular stochastic model ?l = {<4i(a, b)} generated
by the random variable t *-*• S<(co), t G T2 (see § 1.2). This model is
stationary. We also assume that the following condition holds.

8.A. The model 51 is Markov.
For this it is sufficient, for example, that Ex, x G Z2, are independent.

The condition 8.A is also fulfilled if Ex is the Gibbs field with nearest
neighbour potential [9] .

Let g : Ε -»• [0, °°) be a measurable function. We consider the functional

and for any a G T2 we put aZ = {t 6 T2: t > a}.

Lemma 8.1. The set aZ is a lattice. The functional G(GJ, /) is submodular
with respect to lattice operations in aZ.

Next, we assume that to each a G T2 there corresponds a (non-random)
functional α Φ(0, t G °Z, with the following properties.

8.B. For any a ^ b, u ^ a, v~> b the following inequality holds:

α Φ (u /\v) + bO (w V ν Κ " Φ ( " ) + 6 Φ (ν)

(the operations Λ and V are understood in the sense of aZ). For all t G T2

and χ Ε Z 2 we have α+χΦ(ι -f χ) = °Φ(0-

8.C. For each a G Γ2 the set αΖ(ω) of contours t G aZ that minimize the
functional

aF (ω, t) = °Φ (t) + G (ω, t), t £ aZ,

is non-empty with probability 1.
We take an arbitrary map c : T2 -*• Z 2 such that c(t + x) = c(t) + x (for

example, let c(t) be the top right point of the contour t).
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Theorem S.7._For almost all ω the set αΖ(ω) contains its infimum. Let
τα(ω) = inf αΖ(ω) (a.s.), a G T2. Then {τα}ο ε Γ, is a monotone family of
weakly local splitting contours. The stochastic model

58 = {#,(«, 6)} = U , ( t a , Tb)} (i = 1, 2, 3; a^b; a, be Ϊ1,)

/5 regular, stationary, and Markov. The random function £ t = (ETj, τ ( — c(t))
is stationary and Markov, and σ{ζι} = &3(t, t).

We note that the spaces Dt of values of ff are standard, hence they can be
realized as Borel subsets of Rl, and ff as a real-valued function.

Theorem 8.7 is a consequence of Theorem 5.2. The fact that ff is
Markov follows from the fact that the model 58 is regular and Markov and
the fact that σ{ζ,} = &3(t, t).

We give examples of families of functionals αΦ(·)> a G T2, satisfying the
condition 8.B. Let Ψ ; :Rl -> Λ1 (/ = 1, ..., k) be non-decreasing convex
functions, and for each / = 1,2, ..., k let μ̂ -(ί) = max {^(y), y € t}, where /;·
is some linear form on R2. Let V/(a) be functions on T2 such that
•̂(α + χ) = Vj{a) for α G Γ2, χ G Ζ 2 and i^O) > vf(s) if t> s. Then 8.Β is

satisfied for

To guarantee the validity of condition 8.C we can introduce, for example,
the assumption of sufficiently rapid growth of αΦ(7) as the diameter of the
contour t tends to infinity. Conditions of a different kind, which cover the
case αΦ(ί) Ξ 0, are the following: the functional αΦ(ί) is bounded from
below in f e "Z; the random variables yx — g(~x), x £ Z2, are independent
and equally distributed, and P{yx > 0} = i.

8.7. We consider some types of stochastic models different from ?[(;) and
connected with random fields %x, χ G Rd. We put Td = Rd, ,7d = 3${Rd)
and introduce on Td a natural (coordinate-wise) relation < of partial
ordering of vectors. We denote by i^(r) (respectively, \//(r)) the integer that
is nearest to r and smaller (respectively, larger) than r (r G R!), and put
φή(Γ) = 2-ftq>(2V), iffc(r) = 2-h^(2hr). The family OW" of maps

fk (0 = (φ* (*i). · · ·, φ* (id)), Λ (0 = (tk («i). • · ·. ψ

is a skeleton for ( f , ^"d, < ) .
Let @(|) = {^j(a, b)} be the stochastic model on T d generated by the

random function ξχ, χ G Td (see (1.1)) and let &(ξ) = { ^ , ( α , 6)} be its

closure (see §1.3). It is clear that JFi(a, b) coincides with the intersection
over e > 0 of the σ-algebras

St(a — ee, b + ee), e = (\, i, ..., i)£Rd.
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We note that if d = 1, then the model @(ξ) is Markov if and only if the
stochastic process ξχ, χ € R1, is Markov (in the classical sense). At the same
time, the Markov property of the model &(?) for d — 1 is equivalent to the
condition

σ{ξ*-, x '<rr}U σ{ξ»., * ' > * } | Π °{ζχ- x'^lx-e, χ + ε]}.
ε>0

Next, if £', ..., !•? (r ER1) are independent Markov processes, then the models
@(g)and §·(ξ) constructed from the random function ξχ = (|i,, . . ., ξ^)
are Markov. Random functions of this kind and models of the type @(|)
arise, for example, in the study of harmonic functions and additive functionals
of some Markov processes (see [43]). Markov functions of diffusion type
on a partially ordered set of two-dimensional vectors were considered in [44].

We consider the model ?Ks) in more detail in the one-dimensional case
(d = 1). Here ξ = £ χ(ω) (ω Ε Ω, ξ χ(ω) Ε Εχ, χ G R1) is a given stochastic
process.

We define splitting moments r as splitting random elements in the model
&(£) (see condition (of) in §2.1). We say that the process £ has the strong
Markov property with respect to τ if the condition (S^Jl) given in §2.1 is
satisfied. We note that the σ-algebras ,Fi(oL, β) appearing in (tfdt) can be
defined in an equivalent way as Π . ^ ε ) ( α , β), where JFl*\a, β) are generated

E>0

by α, β, and the events {a — e < α, β + ε > b} f] Γ, Γ 6 JFι(α, b) (this
follows from Remark 6.2).

In the model ^(ξ) the requirement 2.A is fulfilled, since according to the
general agreement (6.2) the process £x, χ Ε R1, generates (mod 0) the
σ-algebra of all events Jf. Thus, from Theorem 2.1 we deduce that the
splitting condition (£P) and the strong Markov condition if-ft) are equivalent
in the model δ( | ) .

As a consequence of Theorem 4.2 we obtain the following result.

Theorem 8.8. Let ηχ, χ Ε. R1, be a real stochastic process with continuous
realizations such that for each χ

η*6 Π σ{ξν, x — e^y^x + ε}.
ε>0

Let Ζ be a fixed compact subset of R1 and τ the time when the process ηχ

for the first time attains its {absolute) minimum on Z. Then τ is a splitting
random time.

8.8. We say a few words about one more important model. Let T+ be the
set of non-negative two-dimensional vectors with natural partial ordering <
and the Borel σ-algebra J" + . Let ξχ, χ G T+, be a random function on T + .
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For .γ = (ΛΊ. λ'2) £ Τ+ we put

, Mt {χ) = {y ζ 7+:

The random functions £ that are Markov in the sense of the model
φ = {&t(a, fc)}(for example, the "Brownian sheet") play an important role
in the theory of stochastic integrals on the plane, see [18].

8.9. We make some comments concerning the bibliography.
Various versions of the strong Markov property of random fields on Rd

and on more general spaces have been studied in numerous papers [3], [10],
[11], [23], [24], [45] - [48]. However, until recently the main attention
has been paid to a version of this notion which is weaker than the one
considered in this paper (it corresponds to the case α — )3 = τ in the
definition introduced in §6.4). In [10] and [11] a strong Markov property
of this type was established for random domains satisfying condition (8.2).
These random domains are direct analogues of stopping times (see [49]). ( 1 )

Conditional probabilities of events connected with realizations of the field
outside a random domain r of the form (8.2) were also investigated in [11],
[21]. It became clear that these conditional probabilities are given by the
same law as if the domain τ were deterministic. This result generalizes the
theorem which says that the evolution of a ("good" enough) Markov process
after a stopping time τ is controlled by the same transition function as if the
moment τ were non-random. This property is quite often included in the
definition of the strong Markov property of a stochastic process; see, for
example, [2]. We note that for splitting random domains of general form
this result is not true. It can be seen on very simple examples (the one-
dimensional case, a finite set of values of τ). The study of the strong
Markov property of random domains more general than (8.2) was initiated
in [23]. An analogue of this property for a fixed pair of domains a Q β
was investigated in [24]. Finally, the notion of the strong Markov property
in the form given in this paper was introduced in [47], [48].

As regards applications of the strong Markov property of random fields,
we mention [46], where results of the type of [11] were applied to
asymptotic problems of mathematical statistics (limit theorems for empirical
processes).

analogues of stopping times for the partially ordered set {x € Λ2: χ ^ 0} were
considered in [50], [51], and the references therein.
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